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1 Scope 
This Technical Guidance Document (TGD) 1 is the first in a series regarding Accuracy and Predicted 

Accuracy in the National System for Geospatial Intelligence (NSG).  It is officially entitled “Accuracy and 

Predicted Accuracy in the NSG: Overview and Methodologies”.  As the title suggests, it includes an 

overview of the more detailed Technical Guidance Documents TGD 2a – TGD 2f listed below: 

TGD 2a  Accuracy and Predicted Accuracy in the NSG: Predictive Statistics    

TGD 2b  Accuracy and Predicted Accuracy in the NSG: Sample Statistics    

TGD 2c  Accuracy and Predicted Accuracy in the NSG: Specification and Validation   

TGD 2d  Accuracy and Predicted Accuracy in the NSG: Estimators and their Quality Control  

TGD 2e  Accuracy and Predicted Accuracy in the NSG: Monte-Carlo Simulation   

TGD 2f  Accuracy and Predicted Accuracy in the NSG: External Data and its Quality Assessment 

The series is also supported by a compiled glossary of relevant terms: 

TGD 1-G Accuracy and Predicted Accuracy in the NSG: Glossary of Terms 

All documents in the series, “Accuracy and Predicted Accuracy in the NSG”, are intended to provide 

technical guidance to inform the development of geospatial data accuracy characterization for NSG 

GEOINT collectors, producers and consumers -- accuracy characterization as required to describe the 

trustworthiness of geolocations for defense and intelligence use and to support practices that acquire, 

generate, process, exploit, and provide geolocation data and information based on geolocation data.  

Today, both the sources and desired uses for geospatial data are quickly expanding.  Throughout the NSG, 

trusted conveyance of geospatial accuracy is broadly required for a variety of traditional and evolving 

missions including those supported by manual, man-in-the-loop, and automated processes.  This guidance 

is the foundation layer for a collection of common techniques, methods, and algorithms ensuring that 

geospatial data within the NSG can be clearly requested, delivered and evaluated as fit for desired purpose 

whether by decision makers, intelligence analysts, or as input to further processing techniques.   

TGD 1 contains references to and is referenced by all of the other more detailed Technical Guidance 

Documents.  These documents, TGD 2a – TGD 2f, also have some cross-references among themselves.  All 

Technical Guidance Documents also reference external public as well as “NGA approved for public 

release” documents for further insight/details.  While each individual document contains definitions for 

important relevant terms, TGD 1-G compiles all important terms and respective definitions of use 

particular to this series of documents to ensure continuity and provide ease of reference. 

The TGD 2 documents are also considered somewhat top-level in that they are not directed at specific 

systems.  They do provide general guidance, technical insight, and recommended algorithms.  The 

relationship of the Technical Guidance Documents with specific GEOINT Standards documents and specific 

Program Requirements documents is presented in Figure 1-1, where arrows refer to references.  That is, 
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in general, specific product requirement documents reference specific GEOINT standards documents 

which reference specific technical guidance documents. 

 

Figure 1-1: The relationships between the Technical Guidance Documents, GEOINT Standards 
Documents, and Program Requirement Documents 

Accuracy and Predicted Accuracy in the NSG: Overview and Methodologies, Technical Guidance 

Document (TGD) 1 is for guidance only and cannot be cited as a requirement. 

  

Specific NSG adopted 
GEOINT Standards 
for acquisition

Others
…
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…
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MIL-STD
…

NGA.STND.
…

Program 
Requirements 
Documents SOO

SOW
RFP
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2 Applicable Documents 
The documents listed below are not necessarily all of the documents referenced herein, but are those 

needed to understand the information provided by this information and guidance document. 

2.1 Government specifications, standards, and handbooks 
 

NGA.SIG.0026.02_1.0_ACCGLOS, Accuracy and Predicted Accuracy in the NSG:  Glossary of Terms, 

Technical Guidance Document (TGD) 1-G 

NGA.SIG.0026.03_1.0_ACCPRED, Accuracy and Predicted Accuracy in the NSG:  Predictive Statistics, 

Technical Guidance Document (TGD) 2a 

NGA.SIG.0026.04_1.0_ACCSAMP, Accuracy and Predicted Accuracy in the NSG:  Sample Statistics, 

Technical Guidance Document (TGD) 2b    

NGA.SIG.0026.05_1.0_ACCSPEC, Accuracy and Predicted Accuracy in the NSG:  Specification and 

Validation, Technical Guidance Document (TGD) 2c 

NGA.SIG.0026.06_1.0_ACCESQC, Accuracy and Predicted Accuracy in the NSG:  Estimators and their 

Quality Control, Technical Guidance Document (TGD) 2d 

NGA.SIG.0026.07_1.0_ACCMTCO, Accuracy and Predicted Accuracy in the NSG: Monte-Carlo Simulation, 

Technical Guidance Document (TGD) 2e 

NGA.SIG.0026.08_1.0_ACCXDQA, Accuracy and Predicted Accuracy in the NSG: External Data and its 

Quality Assessment, Technical Guidance Document (TGD) 2f 
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3 Definitions 
There are a number of authoritative guides as well as existing standards within the NSG and Department 
of Defense for definitions of the identified key terms used in this technical guidance document.  In many 
cases, the existing definitions provided by these sources are either too general or, in some cases, too 
narrow or dated by intended purposes contemporary to the document's development and publication.  
The definitions provided in this document have been expanded and refined to explicitly address details 
relevant to the current and desired future use of accuracy in the NSG.  To acknowledge the basis and/or 
linage of certain terms Section 3.1, we reference the following sources considered as either foundational 
or contributory: 
 
[a] Anderson, James M. and Mikhail, E., Surveying: Theory and Practice, 7th Edition, WCB/McGraw-Hill, 

1998. 

[b] DMA-TR-8400.1, DMA Technical Report: Error Theory as Applied to Mapping, Charting, and Geodesy. 

[c] Defense Mapping Agency, Glossary of Mapping, Charting, and Geodetic Terms, 4th Edition, Defense 

Mapping Agency Hydrographic/Topographic Center, 1981. 

[d]  ISO TC/211 211n2047, Text for ISO 19111 Geographic Information - Spatial referencing by coordinates, 

as sent to the ISO Central Secretariat for issuing as FDIS, July 17, 2006. 

[e] Joint Publication (JP) 1-02, Department of Defense Dictionary of Military and Associated Terms, 

November 8, 2010 as amended through January 15, 2016. 

[f] MIL-HDBK-850, Military Handbook: Glossary of Mapping, Charting, and Geodetic Terms, January 21, 

1994. 

[g] MIL-STD-2401, Department of Defense Standard Practice; Department of Defense World Geodetic 

System (WGS), January 11, 1994  

[h] MIL-STD-600001, Department of Defense Standard Practice; Mapping, Charting and Geodesy 

Accuracy, February 26, 1990. 

[i] National System for Geospatial Intelligence [Brochure] Public Release Case #15-489. 

[j] NGA.STND.0046_1.0, The Generic Point-cloud Model (GPM): Implementation and Exploitation, Version 

1.0, October 03, 2015. 

[k] Oxford Dictionaries (www.oxforddictionaries.com/us/) copyright © 2016 by Oxford University Press. 

[l] Soler, Tomas and Hothem, L., “Coordinate Systems Used in Geodesy: Basic Definitions and Concepts”, 

Journal of Surveying Engineering, Vol. 114, No. 2, May 1988. 

 

3.1 Key Terms Used in the Document  

3.1.1 Accuracy (augmented definition) 

The range of values for the error in an object’s metric value with respect to an accepted reference value 

expressed as a probability.  [f]   

In an NSG Geolocation System a typical object of interest is an arbitrary 3d geolocation extracted by the 

system, with a more specific definition of accuracy as follows: 

http://www.oxforddictionaries.com/us/
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 Accuracy   

o The probability of error corresponding to an arbitrary 3d geolocation extracted by the 

system.  The probability of error is typically expressed as CE90=XX meters, the 90% 

probability that horizontal circular or radial error is less than XX meters, as well as LE90=YY 

meters, the 90% probability that vertical linear error is less than YY meters.  In general, 

the error is represented as a 3d random vector and its corresponding CE90 and LE90 

values are typically specified and/or evaluated based on sample statistics of independent 

samples of error. 

 The accuracy requirements for a Geolocation System are typically specified as 

horizontal radial error and vertical linear error of an arbitrary but specific 3d 

geolocation are less than specCE90 with a probability of 90% and less than 

specLE90 with a probability of 90%, respectively. 

 An “accurate geolocation” is defined as the geolocation of a specific extraction 

that satisfies the specified accuracy requirements of the Geolocation System. 

3.1.2 Circular Error 

See “Section 3.1.16  Scalar Accuracy Metrics”. 

3.1.3 Crowd-sourcing 

The process of obtaining data, in particular geospatial data, via individual contributions from a large group 

of people such as an online community, typically on a volunteered basis.         

3.1.4 Error 

The difference between the observed or estimated value and its ideal or true value.   See Appendix A for 

a more detailed and augmented definition. [f]     

3.1.5 External Data 

In the context of this document, external data is geospatial data that is obtained by purchase or openly 

available public sources.  Outsourced data and crowd-sourced data are examples of external data.  

3.1.6 Fusion 

A process that combines or relates different sources of (typically independent) information. 

3.1.7 Linear Error 

See “Section 3.1.16  Scalar Accuracy Metrics”. 

3.1.8 Monte-Carlo Simulation 

A technique in which a large number of independent sample inputs for a system are randomly generated 

using an assumed a priori statistical model to analyze corresponding system output samples statistically 

and support derivation of a statistical model of the system output.  This technique is valuable for complex 

systems, non-linear systems, and those where no insight to internal algorithms is provided (“black box” 

systems). 
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3.1.9 National System for Geospatial Intelligence (NSG) 

The operating framework supported by producers, consumers or influencers of geospatial intelligence 

(GEOINT).  Spanning defense, intelligence, civil, commercial, academic and international sectors, the NSG 

contributes to the overall advancement of the GEOINT function within the strategic priorities identified 

by the Functional Manager for Geospatial Intelligence in the role established by Executive Order 12333.  

The framework facilitates community strategy, policy, governance, standards and requirements to ensure 

responsive, integrated national security capabilities. [i] 

3.1.10 Outsourced Data 

Data through purchase (contract) which may be contingent on specified collection or production criteria. 

3.1.11 Predicted Accuracy (augmented definition) 

The range of values for the error in a specific object’s metric value as expressed by a statistical or 

predictive error model, and may also be expressed as a probability if a specific probability distribution is 

specified or assumed, typically a Gaussian (or Normal) probability distribution. 

In an NSG Geolocation System a typical object of interest is an arbitrary but specific 3d geolocation 

extracted by the system, with a corresponding definition of predicted accuracy as follows: 

 Predicted accuracy  

o A statistical description of the error in a specific geolocation extracted by the system.  The 

error is expressed as a 3d random vector and the statistical description consists primarily 

of an error covariance matrix of the random vector about a mean-value typically assumed 

equal to zero unless specifically stated otherwise.  The probability of error can also be 

computed if either a probability distribution is also specified or a multi-variate Gaussian 

probability distribution of error is assumed.  The probability of error is expressed as a 

probability or confidence ellipsoid at a specified probability or confidence level, 

respectively, and may also be expressed as CE90 and LE90. 

 The estimate of geolocation is usually performed by an estimator, such as a 

Weighted Least Squares estimator, with a corresponding solution error that is a 

function of measurement errors that are random from one solution or realization 

to the next as well as sensor-to-ground geometry at different geolocations.  

 The term “predicted” in predicted accuracy does not correspond to a prediction 

of accuracy applicable to the future since the corresponding error corresponds to 

a geolocation already generated or extracted by the NSG Geolocation System. 

 “Reliable predicted accuracy” is defined as predicted accuracy that is consistent 

with solution error(s). 

3.1.12 Predictive Statistics 

Statistics corresponding to the mathematical modeling of assumed a priori error characteristics contained 

in a statistical error model. 
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3.1.13 Quality Assurance 

The maintenance of a desired level of quality in a service or product, especially by means of attention to 

every stage of the process of delivery or production. [k] 

 For Estimators in the NSG, Quality Assurance (QA) corresponds to the requirement to embed the 

generation of various statistics, analyses, and related procedures in the overall solution process 

which insure the validity (reliability) of the estimators solution 𝑋 and its error covariance matrix 

𝐶𝑋.  

3.1.14 Quality Assessment 

Processes and procedures intended to verify the reliability of provided data and processes, typically 

performed independent of collection or production.   For example, If ground truth is available, then 

comparison of actual (sample) errors to predicted errors (statistical values via rigorous error propagation) 

is a key part of this process.    

3.1.15 Quality Control 

For Estimators in the NSG, Quality Control (QC) corresponds to implementation of a QA requirement to 

embed the generation of various statistics, analyses, and related procedures in the overall solution 

process such that the quality (reliability) of the specific solution is assured. 

3.1.16 Sample Statistics 

Statistics corresponding to the analysis of a collection of physical observations, a sample of the population, 

as compared to an assumed true or an a priori value. 

3.1.17 Scalar Accuracy Metrics  

Convenient one-number summaries of geolocation accuracy and geolocation predicted accuracy 

expressed as a probability: (1) Linear Error (LE) or LE90 corresponds to 90% probable vertical error, (2) 

Circular Error (CE) or CE90 correspond to 90% probable horizontal radial error, and (3) Spherical Error (SE) 

or SE90 corresponds to 90% spherical radial error. [b],[f], and [h]  See Appendix A for a more detailed and 

augmented definition.  

3.1.18 Spherical Error 

See “Section 3.1.16  Scalar Accuracy Metrics”. 

3.1.19 Statistical Error Model 

Information which describes the error data corresponding to a given state vector.  The information 

includes the type of corresponding error representation (random variable, random vector, stochastic 

process, or random process), the category of statistics (predictive or sample), and associated statistical 

information including at a minimum the mean-value and covariance data. 

3.1.20 Validation 

The process of determining the degree to which a model is an accurate representation of the real world 

from the perspective of its intended use/s.  In the NSG, this includes validation of accuracy and predicted 

accuracy specified capabilities. [e] 

http://www.oxforddictionaries.com/us/definition/american_english/maintenance#maintenance__2
http://www.oxforddictionaries.com/us/definition/american_english/desire#desire__7
http://www.oxforddictionaries.com/us/definition/american_english/delivery#delivery__2
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3.1.21 Variance 

The measure of the dispersion of a random variable about its mean-value, also the standard deviation 

squared. [b] 

3.1.22 Verification 

The process of determining that an implemented model accurately represents the developer’s conceptual 

description and specifications.  [e] 

3.2 Other Relevant Terms 
Appendix A contains definitions of the following additional terms relevant to the content of this 

document: 

 A priori  

 A posteriori  

 Absolute Horizontal Accuracy 

 Absolute Vertical Accuracy 

 Bias Error  

 CE-LE Error Cylinder 

 Confidence Ellipsoid 

 Correlated Error  

 Correlated Values 

 Covariance 

 Covariance Function 

 Covariance Matrix 

 Cross-covariance Matrix 

 Deterministic Error 

 Earth Centered Earth Fixed Cartesian 

Coordinate System 

 Elevation 

 Error (augmented definition) 

 Error Ellipsoid 

 Estimator 

 Gaussian (or Normal) probability 

distribution 

 Geodetic Coordinate System 

 Ground Truth 

 Homogeneous 

 Horizontal Error 

 Inter-state vector correlation 

 Intra-state vector correlation 

 Local Tangent Plane Coordinate System  

 Mean-Value 

 Metadata 

 Multi-Image Geopositioning (MIG) 

 Multi-State Vector Error Covariance 

Matrix 

 Order Statistics 

 Percentile  

 Precision 

 Principal Matrix Square Root 

 Probability density function (pdf) 

 Probability distribution 

 Probability distribution function (cdf) 

 Provenance 

 Radial Error 

 Random Error 

 Random Field  

 Random Variable 

 Random Vector  

 Realization 

 Relative Horizontal Accuracy 

 Relative Vertical Accuracy 

 Rigorous Error Propagation  

 Scalar Accuracy Metrics (augmented 

definition) 

 Sensor support data (aka image 

metadata) 

 Spatial Correlation 

 Standard Deviation 

 State Vector 
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 State Vector Error 

 Stationary  

 Stochastic Process  

 Strictly Positive Definite Correlation 

Function  

 Systematic Error 

 Temporal Correlation 

 Time Constant 

 Uncertainty  

 Uncorrelated Error 

 Uncorrelated Values 

 Vertical Error 

 WGS-84 

 

3.3 Abbreviations and Acronyms 

Abbreviation/Acronym Definition 

1d One Dimensional 

2d Two Dimensional 

3d Three Dimensional 

API Applications Program Interface 

CE Circular Error 

DEM Digital Elevation Model 

DSM Digital Surface Model 

DTED Digital Terrain Elevation Data 

ECF Earth Centered Fixed 

ENU East North Up 

EO Electro-optical 

GEOINT Geospatial Intelligence 

i.i.d. independent and identically distributed 

LE Linear Error 

LOS Line-of-sight 

MIG Multi-Image Geopositioning 

NSG National System for Geospatial Intelligence 

Pdcf positive definite correlation function 

QA Quality Assurance 

QC Quality Control 

RF Random Field 

RV Random Vector 

SAR Synthetic Aperture Radar 

SE Spherical Error 

SP Stochastic Process 

Spdcf strictly positive definite correlation function 

TC Time Constant 

TGD Technical Guidance Document 

WLS Weighted Least Squares 
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4 Overview of Accuracy and Predicted Accuracy in the NSG 
This level 1 Technical Guidance Document (TGD 1) presents a general introduction to accuracy and its role 

in the NSG.  Recommended methodologies, procedures, and algorithms are introduced in an integrated 

but somewhat informal fashion.  Other level 2 Technical Guidance Documents (TGD 2a – 2f) present 

corresponding details and are both summarized and referenced by this document. 

4.1 The NSG and Accuracy: Depiction of a generic NSG Geolocation System  
Accuracy and its proper representation play a vital role in the NSG; in particular, for the generic system 

represented by up to three major processes or modules and their representative states S as illustrated in 

Figure 4.1-1.   

 

Figure 4.1-1: Major Processes (Modules) of an NSG Geolocation System 

We are interested in the accuracy of an arbitrary geospatial “object” associated with the above NSG 

Geolocation System, whether the object is within one specific module or an input/output between 

modules.  Relevant objects either affect geolocations that are produced or extracted by the system or are 

the geolocations themselves.  For example, the geolocation of a “target” (or feature) generated by the 

Exploitation Module using data collected and processed by the Collection Module and possibly improved 

(corrected) by the Value-Added Processing Module.   

As such, the Technical Guidance documents present recommended methods, procedures, and algorithms 

that ensure the best possible geolocation accuracies in the above system, including its various products, 

with corresponding reliable representations of those accuracies.  The Technical Guidance documents 

address a wide range of geolocation-related activities, including: (1) the extraction or estimation of 

geolocations and their Quality Control, (2) the specification, validation, and general assessment of 

geolocation accuracy, (3) the supporting use of predictive as well as sample statistics, and (4) the use of 

Monte Carlo simulation in error modeling and product generation.  Correspondingly, the actual definitions 

of accuracy and related quantities are important and defined as follows: 

4.1.1 Accuracy and Predicted Accuracy 

A common dictionary definition for “accuracy” is the degree to which something is true or exact.  

However, this definition is too limited for the NSG.  We expand this general definition and define accuracy 

Collection
Value-Added 

Processing
Exploitation

SC SP SE
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as follows for an NSG Geospatial System, and assume for now that geolocations are the objects of interest 

and relative to a specified geodetic reference system: 

 Accuracy   

o The probability of error corresponding to an arbitrary 3d geolocation extracted by the 

system.  The probability of error is typically expressed as CE90=XX meters, the 90% 

probability that horizontal circular or radial error is less than XX meters, as well as LE90=YY 

meters, the 90% probability that vertical linear error is less than YY meters.  In general, 

the error is represented as a 3d random vector and its corresponding CE90 and LE90 

values are typically specified and/or evaluated based on sample statistics of independent 

samples of error. 

By itself, the above definition is still too limited.  Therefore, we introduce the concept of “predicted 

accuracy”, defined as follows:  

 Predicted accuracy  

o A statistical description of the error in a specific geolocation extracted by the system.  The 

error is expressed as a 3d random vector and the statistical description consists primarily 

of an error covariance matrix of the random vector about a mean-value typically assumed 

equal to zero unless specifically stated otherwise.  The probability of error can also be 

computed if either a probability distribution is also specified or a multi-variate Gaussian 

probability distribution of error is assumed.  The probability of error is expressed as a 

probability or confidence ellipsoid at a specified probability or confidence level, 

respectively, and may also be expressed as CE90 and LE90. 

4.1.2 Specific geolocation and its predicted accuracy 

A specific geolocation and its predicted accuracy are typically the output of an estimator within the 

Exploitation Module, such as a Weighted Least Squares (WLS) batch estimator or a Kalman filter (KF) 

sequential estimator.  The estimator actually estimates a 3 × 1 state vector containing the 3d 

geolocation’s coordinates using sensor-based measurements related to the geolocation.  These 

measurements contain random errors; hence, the solution’s state vector contains random errors as well 

that correspond to a 3 × 1 random vector.  This random vector is described by predictive statistics 

(predicted accuracy), primarily a 3 × 3 error covariance matrix which may be used to generate 

corresponding probabilities of solution error. 

The estimator’s modeling of measurement errors and their effect on its solution and corresponding 

predicted accuracy are based on statistical error models and rigorous error propagation for (near) optimal 

solutions and reliable predicted accuracies.  

4.1.3 Summary of an NSG Geolocations System’s use of accuracy and predicted accuracy 

Accuracy is used to describe the performance of an NSG Geolocation System, and in particular, is used to 

specify corresponding accuracy requirements for an arbitrary geolocation extracted by the system. 

Predicted accuracy is generated for each arbitrary but specific geolocation extracted by the system.   



NGA.SIG.0026.01_1.1_ACCOVER 

 
 

12 

In addition, (near) optimal estimates of specific geolocations and corresponding reliable predicted 

accuracies require the use of proper statistical error models, both within the estimator and within the 

NSG Geolocation System in general, as further described in both this document and the level 2 Technical 

Guidance Documents.   

Without the use of proper statistical error models and corresponding predictive statistics (aka predicted 

accuracy) throughout the NSG Geolocation System, system performance will be far from optimal or 

reliable – various information and data that affect final outputs or products cannot be combined properly.  

In particular, Exploitation cannot be optimal nor include reliable predicted accuracies of results.  For the 

extraction of the 3d geolocation of a specific target of interest, corresponding geolocation errors will not 

be the smallest possible and their predicted accuracies will not be “tailored” to this specific target.  

Reliable predicted accuracies, tailored to the specific target of interest, are required for actionable 

intelligence, among other things. 

4.2 Guide to the remaining sections in the Section 4 overview 
Now that a depiction of a generic NSG Geospatial System has been presented along with a description of 

accuracy and predicted accuracy for context, an overview of the contents of the remaining sections in 

Section 4 follows: 

Section 4.3 of this document presents a conceptual description of the state 𝑆 of a Major Module in an 

NSG Geolocation System (Figure 4.1-1), which includes statistical error models.  Section 4.4 presents 

various examples of NSG Geolocation Systems and their major modules.  Section 4.5 discusses appropriate 

coordinate systems for use in an NSG Geolocation System. 

The differences between accuracy and predicted accuracy for geolocations are further illustrated by 

example in Section 4.6, which also provides additional information regarding both.  More specifically, 

Section 4.6.1 presents an example based on an arbitrary but specific geolocation, and Section 4.6.2 

presents an example based on a Geolocation System in general.  In addition, Section 4.6.3 discusses the 

extension of the above definitions of accuracy and predicted accuracy from geolocations to other objects 

of interest that affect extracted geolocations, such as sensor metadata.  In this case, accuracy and 

predicted accuracy correspond to sensor metadata error which consist of an n-dimensional random 

vector, which typically includes 3d sensor position error, 3d sensor attitude error, etc.   

Section 4.7 presents a summary of the detailed TGD 2 documents as well as the remainder of this TGD 1 

document.  In particular, Section 4.7.1 presents an overview of the inter-relationships between the 

various TGD 2 documents and the contents of each.  Section 4.7.2 presents a summary of the contents of 

the various sections that make-up the more detailed Section 5 of this document. 

4.3 Representative State of a Geolocation System Major Module 
Figure 4.3-1 presents a conceptual description of the top-level contents of the state 𝑆 of a Major Module 

in an NSG Geolocation System.  It consists of: (1) data, (2) a state vector describing important aspects of 

the data or containing estimates related to the data, and (3) a detailed statistical error model for the state 

vector (error), generally associated with its “predicted accuracy”. 
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Figure 4.3-1: Description of the top level contents of a module’s state S 

Although not shown explicitly, a module’s State 𝑆 may consist of multiple sub-States 𝑆𝑖, 𝑖 = 1, . . , 𝑘, each 

containing multiple data, state vectors, and error models.  For example, 𝑆1 could include both: (1) a state 

vector estimate of a geolocation, and (2) a state vector estimate of the sensor metadata used to estimate 

the geolocation.  A corresponding statistical error model or predicted accuracy for each state vector is 

also contained in 𝑆1.  If these state vector estimates were generated using sensor-based images, the 

accompanying data in 𝑆1 would also include the images.   In addition, the state vector estimate of the 

sensor metadata and its statistical error model contained in 𝑆1 may have first been generated in a 

different module prior to its input into this module. 

Another example of the contents of a sub-State 𝑆, for example 𝑆2, corresponds to the results of a Monte 

Carlo simulation of a stochastic error process representing a long time sequence of temporally correlated 

sensor metadata errors, used in an “off-line” study and analysis related to error propagation or even 

embedded in the generation of various products.  In this case, the actual sequence of simulated errors 

could be placed in 𝑆2 as either data or as a state vector, i.e., a concatenated state vector containing the 

sequence of simulated errors.  The corresponding statistical error model would contain the statistical 

parameters used to generate the simulated sequence of errors, and possibly the statistical parameters of 

the generated errors themselves, computed using sample statistics. 

Statistical Error Model Content 

The statistical error model of Figure 4.3-1 is described in Section 5.2, and includes the identification of the 

underlying type of representation of the error: Random vector (RV), Stochastic process (SP), or Random 

Field (RF).  The latter two representations of error correspond to a collection of random vectors 

parameterized by time and spatial location, respectively.  A 𝑛 × 1 random vector contains 𝑛 random 

variables as components.    

The differences between random variables, random vectors, stochastic processes, and random fields are 

illustrated by example in Section 5.3.  A simple example of a representation of error is a single 3 × 1 

State S:

Data State Vector Statistical Error Model

Referenced but unknown error: 

Provided descriptors of error:

Underlying Type: {RV, SP, RF}

Stats Category: {Predictive, Sample}

Stats:  { , , , }
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random vector 𝜖𝑋 that corresponds to the error in an estimator’s solution or state vector 𝑋 of a 3d 

geolocation. 

Also, with regards to statistical error models, the corresponding state vector 𝑋 is very general.  Instead of 

a geolocation or sensor metadata, for example, it can correspond to a vector of sensor-based 

measurements related to one or more geolocations.  In this case, the random vector 𝜖𝑋 corresponds to a 

vector of measurement errors. 

Statistics for an error represented as a random vector also include its 𝑛 × 1 mean-value 𝜖𝑋̅̅̅̅  and its 𝑛 × 𝑛 

covariance matrix 𝐶𝜖𝑋.  From these statistics, the probability of error can also be derived, if so desired, 

assuming a Gaussian probability distribution of error.  The latter assumption is not required if statistics 

are sample-based instead of predictive-based, or if the optional probability density function 𝑝𝑑𝑓𝜖𝑋 is 

provided.  Statistics may also include a strictly positive definite correlation function (spdcf) 𝜌(𝑞) which is 

used to represent the correlation (of errors) between a collection of random vectors represented as either 

a stochastic process or a random field.   

4.4 Examples of NSG Geolocation Systems and their Major Modules  
The NSG is large in scope.  In order to give further insight into what constitutes one of its generic systems 

and its modules, two specific, but still somewhat generic, examples are as follows: 

(1) An Imaging System: 

 Collection Module: satellite-based imaging sensors and ground station to produce images 

and estimates of their original (a priori) metadata (sensor position, attitude, etc.) needed 

for the image-to-ground relationship; the ground station includes Kalman filter/smoother 

estimators to generate the estimates and their predicted accuracies. 

 Value-Added Processing Module (optional): Adjustment of the a priori metadata for 

improved predicted accuracy, typically using a batch Weighted Least Squares (WLS) 

estimator and based on information from related images and/or ground control; 

corresponding possible output (products) include: 

 Adjusted or a posteriori metadata (and imagery) 

 Exploitation Module: the extraction of feature (“target”) 3d locations from measurements 

in the images and corresponding predicted accuracy of the locations based on the above.  

The optimal extraction of 3d geolocations and corresponding predicted accuracy is 

termed Multi-Image Geopositioning (MIG), typically performed using a WLS estimator 

(see Section 5.8.1.1 for more detail).  Possible products are based on the extraction of the 

geolocations of specific features and/or geolocations across a grid: 

 Digital Point Positioning Data Base (DPPDB) 

 Digital Terrain Elevation Data (DTED) 

 Digital Surface Model (DSM) 

Note that the above products could alternately be considered generated as part of a 

Value-Added Processing Module. 

 



NGA.SIG.0026.01_1.1_ACCOVER 

 
 

15 

(2) A Bathymetric System 

 Collection Module: Various independent field (ship-based) surveys of bathymetric 3d 

soundings over a very large area of the ocean, and crude estimates of their a priori 

accuracy; surveys follow ship tracks interspersed throughout the area. 

 Value-Added Processing Module: Weighted combination/spline fit of the survey-data to 

generate a grid of estimated depth at specified horizontal locations over the entire area 

of interest, including corresponding predicted accuracy at each grid location. 

 Exploitation Module: Generation of various nautical products, including predicted 

accuracy, to enhance navigation safety. 

There are many possible NSG Geolocation Systems of interest, each with their own major modules, where 

each module requires its own relevant statistical error model(s) in order for the overall system to perform 

properly.  Thus, this document does not address the accuracy or predicted accuracy (error models) of 

specific systems or modules.  Instead, it provides over-all definitions and recommended standard 

practices applicable to all.  This includes a “tool box” of applicable top-level statistical error models from 

which to select and populate.  Other documents can then address specific systems and modules in an 

integrated and consistent fashion based on the information provided in this document.   

Note: This document does present examples in some sections that are based on various aspects of image-

based geopositioning for convenience and specificity; however, the same demonstrated principles apply 

across the entire scope of the NSG. 

In summary, this section presented examples of major modules within NSG Geolocation Systems, 

consistent with the Figure 4.3-1 summary of a major module’s state 𝑆 consisting of data, a state-vector 

describing the relevant state of the data, and a statistical error model corresponding to the state vector.  

The state vector is usually much smaller than the data itself.  For example, the data may correspond to a 

set of images (pixels), and the state vector to the relevant metadata (time series of sensor position, 

attitude, etc.) for the images which enables extraction of geographic information.  The statistical error 

model corresponds to the error in the state vector relative to truth, typically well-defined but unknown.   

4.5 Geolocations and Coordinate Systems 
In this document and underlying TGD 2 documents, both the state vector and its error are assumed to 

correspond to geolocations or values required to generate geolocations, such as sensor and sensor 

platform metadata.  Therefore, for example, errors in the classification and attribution of features are not 

considered explicitly. 

Geolocations are represented in various coordinate systems based on the World Geodetic System 

standard, WGS-84: Cartesian coordinates (x-y-z) and Geodetic coordinates (geodetic latitude, longitude, 

and height above the ellipsoid).  Cartesian coordinate systems can either be Earth-Centered-Fixed (ECF) 

or local tangent plane, such as East-North-Up (ENU).  Regardless the coordinate system used to represent 

geolocations, geolocation errors and corresponding statistics are recommended as represented in ENU.  

For a group of geolocations in a common and reasonably-sized area of interest, a common ENU coordinate 

system is recommended, i.e., one fixed origin near their “center” geolocation.  A reasonably-sized area of 
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interest is approximately no larger than a 1 degree x 1 degree cell (in latitude and longitude) over the 

earth’s surface.  On the other hand, if geolocations are to be considered on an individual basis, it is 

recommended that the origin of each geolocation’s ENU coordinate system correspond to the 

geolocation’s ECF coordinates.  This will more precisely preserve the direction of “up” for each 

geolocation.  

Deterministic and vetted transformations should be used to transform coordinates from one to another 

of the above coordinate systems.  Transformation of errors and their statistics from one coordinate 

system to another is a form of error propagation and is based on corresponding first-order Taylor Series 

expansions (see Section 5.6 of TGD 2a).  Finally, note that the WGS-84 reference is refined periodically; 

thus, it is important to time tag geolocation coordinates such that the corresponding WGS-84 reference 

can be determined at a later date if various coordinates are to be compared.  See Section 5.13 of this 

document on the provenance of predicted accuracy. 

4.6 Accuracy versus Predicted Accuracy in the NSG: Examples 
The title of this document starts with the term “Accuracy and Predicted Accuracy in the NSG”.  So, at the 

top-level and as relevant to the NSG, what is “accuracy” per se and how does it differ from “predicted 

accuracy”?  The two examples presented in Sections 4.6.1 and 4.6.2 support the earlier introductory 

discussion on accuracy and predicted accuracy.   These examples address geolocations explicitly and are 

recommended for a more complete understanding of accuracy, predicted accuracy, their differences, and 

their use in the NSG.  They also provide a “look-ahead” to many of the concepts discussed in Section 5.   

The first example is presented in Section 4.6.1 and is focused on an arbitrary but specific geolocation.  The 

second example is presented in Section 4.6.2 and is focused on an overall Geolocation System.  In addition, 

Section 4.6.3 presents a related discussion, but the object of interest corresponds to sensor metadata as 

opposed to a geolocation per se. 

4.6.1 Example focused on an arbitrary but specific geolocation 

The first example is a generic example associated with the extraction of an arbitrary but specific feature’s 

geolocation using a (near) optimal estimator, such as a WLS estimator, which estimates the geolocation 

using sensor-based measurements related to the geolocation and typically resides within the Exploitation 

Module of Figure 4.1-1.  The estimate corresponds to lowest expected magnitude of solution error or 

estimator “cost”.  The associated geolocation system and sensor are not specific in this example and could 

correspond to virtually any NSG Geolocation System and corresponding sensor(s). 

In this example, error corresponds to the error in the estimator’s solution 𝑋 for the feature’s 3d 

geolocation, and is considered a 3d random vector because the measurements used by the estimator 

contain random errors and are propagated into solutions errors by the solution process, a form of rigorous 

error propagation.  The actual solution error 𝜖𝑋 corresponds to a specific realization of the measurement 

errors and is almost always unknown because the feature’s true location is almost always unknown.  In 

addition to the estimate of the geolocation, the estimator provides a statistical description of the resultant 

solution error: predicted accuracy.  This statistical description consists primarily of a 3x3 error covariance 

matrix about an assumed mean-value of error equal to zero. 
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Predicted accuracy is tailored to the specific geolocation and is of higher fidelity and contains more 

information regarding the geolocation’s error than does the specified accuracy for the Geolocation System 

itself.  However, it is critical that the predicted accuracy is reliable.  Reliable predicted accuracies are 

required for actionable intelligence based on specific geolocations.  They are also required for the optimal 

fusion or combination of the inputs/outputs of multiple estimators associated with a Geolocation System 

or systems.  

The error covariance matrix provided as part of the predictive statistics (predicted accuracy) with the 

estimator’s solution is also equivalent to an error ellipsoid or a confidence ellipsoid at a designated level 

of probability or confidence, respectively, as discussed in Section 5.5.1.   More specifically, if horizontal 2d 

location errors are of interest and assuming that a multi-variate Gaussian (normal) distribution of 

horizontal errors is either specified or assumed, the error covariance matrix is equivalent to an error 

ellipse or a confidence ellipse.  

Using 90% as an example of desired confidence, the 90% confidence ellipse is centered at the estimator’s 

solution for the horizontal location, and by definition, it is the least-area ellipse such that there is a 90% 

probability or confidence that the true but unknown horizontal location is within its interior.  The 90% 

error ellipse is the same ellipse but centered at zero error with a 90% probability that the true but 

unknown horizontal error is within its interior. 

Figure 4.6.1-1 illustrates the top-level concepts and interrelated roles of estimator, solution error, and 

predicted accuracy for a specific geolocation.   The 90% confidence ellipse is generated from the upper 

left 2 × 2 portion of the 3 × 3 error covariance matrix, the latter applicable to 3d geolocation error.  A 

90% confidence ellipsoid is similar, but applicable to 3d geolocation and based on the full 3 × 3 error 

covariance matrix.  Both the 2 × 2 and the 3 × 3 error covariance matrices are relative to the local tangent 

plane coordinate system. 

 

Figure 4.6.1-1: An overview of the relationships between Estimator, Solution Error, and Predicted 

Accuracy for an arbitrary but specific geolocation 

An accurate geolocation with reliable predicted accuracy 

The specific solution should correspond to an accurate geolocation with reliable predicted accuracy, 

which means that the specific solution has the following two properties: 
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1) the geolocation meets or exceeds the accuracy requirements for the Geolocation System for an 

arbitrary geolocation, i.e., the geolocation is an accurate geolocation. 

2) the solution error is consistent with the solution’s predicted accuracy or statistical description, 

i.e., the predicted accuracy is a reliable predicted accuracy. 

These two properties are illustrated graphically in Figure 4.6.1-2 below.   The predicted 90% error ellipse 

is equivalent to the error covariance matrix contained in the predicted accuracy’s statistical description.  

Also, multiple independent realizations of the specific solution were performed, which change the 

solution (error) each time but not its predicted accuracy.  Note that only 1 realization was illustrated 

with the corresponding 90% confidence ellipse in Figure 4.6.1-1. 

 

Figure 4.6.1-2: Independent realizations of a specific solution and corresponding errors; the solution 

corresponds to an accurate geolocation with reliable predicted accuracy 

Approximately 90% of the independent samples of solution error are within the 90% error ellipse in 

Figure 4.6.1-2, which corresponds to reliable predicted accuracy.  In addition, at least 90% of the 

independent samples of solution error are within the system CE90 requirement, the radius of the outer 

circle in the figure, which corresponds to an accurate geolocation.   

The derived predicted CE90, also presented in Figure 4.6.1-2, is computed from the error covariance 

matrix and allows for convenient comparison to the system CE90 requirement.  In addition, the system 

CE90 requirement is sometimes termed “specCE90” and the derived predicted CE90 is sometimes 

termed “predCE90”. 

In general, characteristic 1 (accurate geolocation) does not necessarily imply characteristic 2 (reliable 

predicted accuracy) and vice versa, although both are satisfied in Figure 4.6.1-2, as desired.  Figure 4.6.1-

 

predicted 90% error ellipse: 

derived predicted CE90: 

system accuracy CE90 requirement: 

independent sample of specific solution’s error: 

x error 

y error 
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3 illustrates various instances of the four possible combinations, with the derived predicted CE90 circle 

left out to keep things from getting too cluttered: 

 

Figure 4.6.1-3: accurate geolocation and reliable predicted accuracy (upper left), accurate geolocation 

and unreliable predicted accuracy (upper right), inaccurate geolocation and reliable predicted accuracy 

(lower left), and inaccurate geolocation and unreliable predicted accuracy (lower right) 

Operationally, there is of course only one realization of a specific solution and its corresponding 

geolocation error is unknown.  So how are we reasonably sure that the specific solution corresponds to 

an accurate geolocation with corresponding reliable predicted accuracy?  We rely on: 

1) the Geolocation System having specified accuracy requirements that were validated and 

predicted accuracy requirements that were validated – see TGD 2c (Specification and Validation) 

for details.  Validation is based on multiple independent samples of geolocation error and 

corresponding predicted accuracy over multiple locations.  This addresses arbitrary 

geolocations. 

2) the Quality Control (QC) of the specific solution of interest and performed by the estimator– see 

TGD 2d (Estimators and their QC) for details.  This addresses the specific solution. 

4.6.2 Example focused on an overall Geolocation System  

Let us assume an NSG Geolocation System that utilizes a commercial satellite-based imaging system, 

where exploitation consists of extracting the 3d location of a target of interest that is identified and 

measured in a pair of (stereo) images that were imaged on the same satellite pass and that cover 

approximately the same portion of the earth’s surface.  The imaging system is assumed to use the same 

specific sensor or collection of sensors of the same type.  Many such commercial systems are operational 

today and utilized via industry partnerships and agreements throughout the NSG.  Naturally, we are 

interested in the “accuracy” of such a geolocation system (Figure 4.6.2-1), and in particular, the accuracy 
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of extracted geolocations.  That is, the accuracy of an extracted 3d location of an arbitrary target from an 

arbitrary pair of images – ranging from thousands of past pairs to thousands of future pairs of images.   

 

Figure 4.6.2-1: Example of a Stereo Electro-Optical (EO) Imaging System – right side of the above graphic 

Accuracy 

Accuracy is then defined as follows for such a system: for an arbitrary target location and an arbitrary pair 

of stereo images, it is 90% probable that horizontal (radial) extraction error is less than 5 meters and 90% 

probable that vertical extraction error is less than 6 meters, i.e., CE90≤ 5 meters and LE90 ≤ 6 meters.  

When corresponding to actual system requirements, these are sometimes referred to as specCE90 and 

specLE90, respectively. 

CE90 and LE90, or alternatively CE and LE at different specified levels of probability, are used for the 

specification of accuracy because they are practical: simple scalars, and easy to understand as detailed in 

Section 5.6.  The actual values of CE90 and LE90 are typically determined by system design supplemented 

by the analysis of sample statistics, where the samples of error correspond to test sites containing ground 

truth or surveyed geolocations.   Note: The specific values of 5 and 6 meters for CE90 and LE90, 

respectively, are notional and for purposes of illustration. 
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This certainly provides us with a good overall picture as to what to expect in terms of geolocation errors 

for an arbitrary target extraction.  In fact, it is essential for the NSG – but not enough.  The “missing piece” 

of information is “predicted accuracy”, which was also discussed previously in example 1 of Section 4.6.1. 

Predicted Accuracy 

Predicted accuracy refers to an arbitrary but specific extraction, and includes population of a 

corresponding detailed statistical error model, generated simultaneously with the target’s 3d location via 

a MIG solution if an image-based sensor geolocation system.  The MIG solution or “extraction” (subsection 

5.8.1.1) is the output of a WLS estimator and takes advantage of the additional information that is 

available: (1) the specific imaging geometry of the stereo pair, as opposed to its possible operational 

range, (2) a specific prediction of the corresponding image metadata’s expected magnitude and 

correlation of errors, provided in the metadata along with the specific sensor position and attitude values, 

and (3) a specific prediction of the expected magnitude and correlation of errors in the actual 

measurement of the target in the images, which is target feature/surrounding terrain characteristic-

dependent.  With this additional information, the MIG can provide an optimal solution of 3d location, 

including its error covariance matrix, a “custom-made” statistic-based description of the solution’s error.  

Finally, regarding nomenclature, “predicted accuracy” refers to an extraction that has already occurred, 

not a future extraction. 

The statistical error model for the extracted geolocation includes the 3x3 error covariance matrix (𝐶𝜖𝑋) 

which specifies the expected magnitude and the correlations (inter-relationships) of the various 

components (x-y-z) making up the 3d location error.  The error covariance matrix can also be used to 

compute and render an equivalent 90% probability error ellipsoid. 

A 90% (probability) error ellipsoid corresponding to a typical but specific extraction is illustrated in Figure 

4.6.2-2.  The 90% error ellipsoid is centered at zero with a 90% probability that the solution 3d error 

resides within the ellipsoid.  The predicted mean-value of error is assumed zero, as typically the case.  A 

90% confidence ellipsoid is identical except that it is centered at the solution location with a 90% 

confidence that the true target location resides within the ellipsoid.   Note that example 1 of Section 4.6.1 

was concerned with horizontal error, and therefore a 90% confidence ellipse was generated instead of a 

90% confidence ellipsoid. 
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Figure 4.6.2-2: 90% probability error ellipsoid (image rays correspond to line-of-sights 
for electro-optical imaging system) corresponding to predicted accuracy of a specific geolocation 

solution; actual 3d error not shown but should reside within the ellipsoid with a probability of 90% 

The error covariance can also be used to generate CE90 and LE90 (aka predCE90 and predLE90), which 

specify less information than the error covariance matrix or 90% probability error ellipsoid, but are 

convenient summaries and can be compared directly to the accuracy specification for the Geolocation 

System in general.  The fact that CE90 and LE90 contain less information than the error covariance matrix 

is easily seen as follows: the error covariance matrix is symmetric and corresponds to 6 unique numbers 

(see Figure 4.6.1-1), and CE90 and LE90 correspond to one unique number each.   

Values of CE90 = 4 meters and LE90 = 5 meters correspond to the above specific solution, and are also 

illustrated in Figure 4.6.2-3 below.  A CE90-LE90 error cylinder combines these two scalar accuracy 

metrics, is a convenient visual aid, and is illustrated in Figure 4.6.2-4. 
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Figure 4.6.2-3: Corresponding 90% CE (CE90) and 90% LE (LE90) summaries contain less information for 

a specific solution than does the error covariance matrix itself or 90% probability error ellipsoid 

 

Figure 4.6.2-4: Corresponding CE90 – LE90 (error) Cylinder 

CE90 and LE90 should only supplement the error covariance matrix, never replace it.  Note that an error 

ellipsoid can be much more elongated than in Figure 4.6.2-2, such that a CE90 and LE90 representation 

alone would be even more problematic if they were to replace the error covariance matrix or 90% 

probability error ellipsoid. 

See Section 5.5.1 and 5.5.2 for further details regarding the relationship of an error covariance matrix to 

probability ellipsoids or confidence ellipsoids, including their equivalence, and to CE90 and LE90. 

Predicted Accuracy benefits 
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The above discussion illustrates that predicted accuracy for a specific location, a MIG solution in this 

example, contains more detailed information about corresponding errors than does the top-level 

specification of accuracy for an arbitrary geolocation or extraction.  This is due to both a more detailed 

description of errors via the error ellipsoid (error covariance matrix) than from the use of predCE90 and 

predLE90 alone, as well as from the fact that the predCE90 and predLE90 generated from this error 

covariance matrix (4 and 5 meters, respectively, for the above example) differ from the “generic” values 

of specCE90= 5 meters and specLE90=6 meters, respectively, used in the accuracy specification for an 

arbitrary extraction.   

Furthermore, the predCE90 and predLE90 corresponding to the predicted accuracy of a specific extraction 

can differ from those specified for system accuracy in a much more dramatic way than for the above 

example.  In particular, they could convey that there is a 90% probable 3 meter horizontal extraction error 

and a 90% probable 4 meter vertical extraction error if imaging geometry is in the “sweet spot”, the 

estimates of the image metadata are good, and the target “stands out” in the imagery.  More importantly, 

if imaging geometry is near the edge of its operational limit, the estimate of image metadata worse than 

usual, and the target “fuzzy” in the image due to weather conditions or ambiguity of definition, they could 

convey that there is a 90% probable 6 meter horizontal extraction error and a 90% probable 11 meter 

vertical extraction error – a critical piece of information for any actionable intelligence that is based on 

the extracted target location. 

Also, as explained later in this document, the error covariance matrix (𝐶𝜖𝑋), the key ingredient in the 

statistical error model, allows for optimal use of the extracted location in “down-stream” value-added 

processing, such as fusion.  Section 5.6.2.2 presents an example of fusion that yields an approximate 10x 

improvement in fusion accuracy for the combination of two different estimates of the 3d location of a 

common target of interest when the estimates’ error covariances are used to combine (fuse) the 

estimates instead of just their corresponding CE and LE summaries.   

In summary, the availability of predicted accuracy for each specific geolocation that is extracted is a critical 

piece of information.  Furthermore, the reliability of predicted accuracy is also important and relies on 

realistic error models for all significant errors affecting the geolocation or estimator’s solution. 

4.6.2.1 Elevation – reliant Variation 

A common variation of the above Geolocation System is the use of single image extraction (aka 

monoscopic extraction) instead of stereo image extraction, where a monoscopic imaging system is also 

depicted in Figure 4.6.2-1.  In this document, such a variation is considered a different Geolocation System 

than the stereo image-based system.   Also, although this variation is applicable to a specific Geolocation 

System, its underlying principles and approach are applicable to many other systems that do not utilize 

an imaging sensor.  The common characteristic is the use of a single sensor-based measurement that is 

inherently 2d in order to extract a 3d geolocation, and the corresponding need for additional information 

– an external estimate of elevation or height as detailed below. 

In the single image-based system, a 2d measurement (line, sample) of the location of a 3d geospatial 

object of interest from an image does not provide enough information; thus, an a priori estimate of its 
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corresponding elevation must also be provided, such as from a Digital Elevation Model (DEM) or Digital 

Surface Model (DSM), in order to extract the 3d location.  For a specific location, this is typically 

accomplished using MIG, with inputs consisting of the image measurement and the a priori elevation 

estimate.  The MIG’s output consists of the estimator solution, basically the intersection of image-to-

ground line-of-sight (LOS) vector with the DEM, along with the solution’s predicted accuracy.  The image-

to ground LOS is based on the image measurement, the image metadata, and the sensor image-to-ground 

function.  And in this case, the term “MIG” is a misnomer as it really is only based on one image.  The 

solution is also accompanied by predicted accuracy, a function of the various errors, including sensor 

metadata errors and DEM errors.  Correspondingly, system accuracy for an arbitrary solution or extraction 

is typically equal to the predicted accuracy for a representative geolocation, and typically at an elevation 

angle at a lower value within the sensor-to-ground operational range, since the lower the value of the 

elevation angle the larger the corresponding effect of elevation error on horizontal error. 

Accuracy is then defined for an arbitrary monoscopic extraction the same as for an arbitrary stereo 

extraction as detailed earlier, with one exception:  There are two choices for the specified LE90, which are 

listed below: 

1) LE90 is set equal to the accuracy of the DEM assumed available to the Geolocation System, with 

CE90 set equal to the appropriate horizontal accuracy due to both the normal extraction errors, 

typically dominated by the sensor metadata errors, and the effect of the DEM elevation errors on 

the horizontal errors – see Figure 4.6.2.1-1.  This effect increases as the elevation angle decreases.   

2) LE90 is set equal to a negligible value, with CE90 set appropriately for horizontal accuracy with no 

effect due to elevation errors – see the upper right portion of Figure 4.6.2.1-1.  Any corresponding 

specification of Geolocation System accuracy explicitly states this assumption, which allows those 

interested to inflate CE90 appropriately based on the accuracy of the assumed elevation that they 

will be able to access. 

 



NGA.SIG.0026.01_1.1_ACCOVER 

 
 

26 

 

Figure 4.6.2.1-1: The effect of elevation errors on horizontal extraction errors assuming a single EO image 

extraction with DEM; a function of LOS elevation angle; figure not to scale. 

In Figure 4.6.2.1-1 the sensor LOS 90% outer-bounds are due to the combined effects of sensor metadata 

errors: position and attitude (sensor pose) errors as well as errors in any calibration corrections, such as 

focal length correction.  Also, because this is an EO scanning sensor, the LOS is virtually aligned with the 

imaging locus, the blue dotted line in the figure.  This locus is more generally termed the “geolocation 

locus” in order to encompass non-imaging sensors as well.  The geolocation locus is defined as 

corresponding to all possible geolocations that are consistent with the sensor measurement, a 2d image 

pixel (line,sample) in the above example.  The effect of elevation errors on horizontal errors is more 

generally a function of the elevation angle relative to the geolocation locus in the local tangent plane. 

The above paradigm regarding use of an external elevation for necessary additional information is also 

applicable to sensors other than imaging sensors, i.e., those sensors with corresponding 2d 

measurements. 

4.6.3 Objects of interest other than geolocations 

Similar concepts of accuracy and predicted accuracy and the corresponding statistical error model are 

applicable to the other “up-stream” NSG modules, such as the Collection and the Value-Added Processing 

modules, and not just the Exploitation module and explicit geolocations.  Correspondingly, the accuracy 

and predicted accuracy typically do not correspond to 3d geolocation errors, but to the errors in other 

relevant objects or state vectors, such as sensor metadata.   

For example, sensor metadata typically corresponds to an estimate of a 𝑛 component state vector 

containing sensor pose (position and attitude), possibly sensor calibration parameters, etc.  This estimate 

is generated by an estimator within the NSG Geolocations System’s Collection Module and possibly 
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further refined by its Value-Added Module.  The estimate’s predicted accuracy consists of an 𝑛 × 𝑛 error 

covariance matrix with an assumed mean-value of error equal to zero, contained as part of its statistical 

error model.  The error in the estimate corresponds to specific sensor metadata and the predicted 

accuracy provides a statistical description of this unknown error via the statistical error model.  

On the other hand, system accuracy, as opposed to predicted accuracy, typically corresponds to accuracy 

requirements for the estimator in general that resides within the Collection Module and/or Value-Added 

Module, i.e., applicable to the errors in an arbitrary state vector estimate of various applicable sensor 

metadata.  It is specified by appropriate statistical metrics and/or probabilistic values for various sub-

collections of the 𝑛 components of sensor metadata error, or a metric that is a function of these 

components, similar to CE90 and LE90 for geolocation error. 

Appendix B presents three general methods that can be used to specify sensor metadata system accuracy: 

Geolocation Equivalent, State Vector Direct, and Sensor Direct.  A representative example of the Sensor 

Direct method is presented in Figure 4.6.3-1.  It specifies system accuracy as it directly relates to a sensor 

and a measurement of geolocation from that sensor.  In this particular example, it specifies sensor 

metadata accuracy as CE90 angular error along the geolocation locus, or the sensor-to-ground line-of-

sight vector since an EO imaging sensor.  This is similar to the method detailed in [1, pg. 34].  Note also 

that this method is “stand alone” in that it requires no assumption regarding external data, such as an 

elevation or height of a geolocation and its assumed accuracy.  Another example of the Sensor Direct 

Method is presented in Appendix B and corresponds to a Synthetic Aperture Radar (SAR) sensor. 

 

Figure 4.6.3-1: Sensor Direct representation of sensor metadata accuracy corresponding to EO imagery 

4.7 Guide to Technical Content 
Now that a general overview of an NSG Geolocation System and its major modules have been presented, 

including relevant definitions for accuracy and predicted accuracy, a guide to further technical content is 
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presented prior to Section 5.  In particular, an overview of the various level 2 Technical Guidance 

Documents and their interrelationships is presented in Section 4.7.1, followed by a detailed technical 

guide to the content of Section 5 of this document is presented in Section 4.7.2. 

4.7.1 Overview of the level 2 Technical Guidance Documents 

Figure 4.7.1-1 presents an overview of the level 2 Technical Guidance documents and their inter-

relationships:   

 

Figure 4.7.1-1: The roles played by the various level 2 Accuracy and Predicted Accuracy Technical 

Guidance Documents in support of an NSG Geolocation System 

The upper level of the figure contains three documents which provide detailed technical guidance for 

the generation of accurate geolocations with reliable predicted accuracies.   
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The first document corresponds to TGD 2d which presents recommendations for the development and 

implementation of estimators in an NSG Geolocation System, including the Quality Control (QC) of their 

outputs to ensure (near) optimal estimates and corresponding reliable error covariance matrices or 

predicted accuracy.  The second document corresponds to TGD 2c which presents recommendations for 

the specification, validation, and overall assessments of accuracy and predicted accuracy of an NSG 

Geolocation System.  The third document corresponds to TGD 2f which presents recommendations for 

the assessment and QC of external data used within the NSG, such as crowd-sourcing data, which 

typically contains no corresponding pedigree or predicted accuracy.   

These three documents correspond to the “primary” NSG Geolocations functions associated with (1) the 

NSG-internal generation of accurate geolocations and related sensor metadata, including their reliable 

predicted accuracies, (2) their NSG-internal specification and validation of corresponding accuracy and 

predicted accuracy requirements, and (3) the NSG-internal assessment of the quality, reliability, and 

accuracy of geolocation related data generated external to the NSG but used internally.   

The lower level of Figure 4.7.1-1 corresponds to NSG “support” functions and contains three documents 

which support the above primary functions.  The first document corresponds to TGD 2a which presents 

recommendations for the appropriate generation and use of predictive statistics.  The second document 

corresponds to TGD 2b which presents recommendations for the appropriate generation and use of 

sample statistics.  The third document corresponds to TGD 2e which presents recommendations for the 

appropriate use of Monte Carlo simulation in the support of error modeling.   

The following Tables 4.7.1-1 through 4.7.1-3 present overviews of the contents of all six documents: 

TGD 2a through TGD 2f, in that order. 
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Table 4.7.1-1: Overview of the Technical Guidance Documents regarding Statistics – TGD 2a: Predictive 

Statistics, and TGD 2b: Sample Statistics 

 

 

 

TGD document:

Elements:

Applications:

random variables,

random vectors, sample statiscs of

stochastic processes, error samples.

random fields.

comparison of sample

statistics to specs.

Tuning of a prior i error models.

Details and

Methods: generation,

representation, Confidence intervals.

dissemination. Computation of sample CE90 / LE90 /

SE 90, etc.

how to compute/render. Hypothesis tests.

CE90 / LE90 / SE90 and

other probability levels,

how to compute & render,

pros and cons of use.

Primary TGD 1 Sections 5.4 - 5.8 Section 5.4

referrals:

Rigorous error propagation.

Sample counterparts to elements 

of predictive statistics.covariance matrix,

Statistics corresponding to Geolocation Accuracy and Predicted Accuracy

cumulative probability distribution,

Covariance matrices:

Scalar Acccuracy Metrics:

Confidence ellipses and ellipsoids:

various related statistics and metrics.

Representation of predicted accuracy.

TGD 2b: Sample Statistics

Order statistics.

Classical statistics.

Assessing accuracy and predicted

accuracy performance:

Validation of accuracy and predicted

accuracy requirements:

A priori  error modelling:

TGD 2a: Predictive Statistics

Mean value,

correlation function,

probability density function,
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Table 4.7.1-2: Overview of the Technical Guidance Documents regarding Processes – TGD 2c: 

Specification and Validation, and TGD 2d: Estimators and their Quality Assurance and Quality Control 

 

TGD document:

Descriptions

and batch vs. sequential,

methods for: cost function, optimality, …

Estimator implementations:

Weighted Least Squares,

Kalman filter,…

Requirements correspond to 3d Estimator effects on Accuracy and 

estimator solutions, including

error covariance matrices, for

3d geolocations and/or

improved sensor metadata, …

The specification/validation of both

accuracy and predicted accuracy address

extracted geolocations including the

effects of sensor metadata errors on them. (near) optimal solutions  and

reliable predicted accuracies.

Related Estimator QA/QC based on:

concepts and editing of measurements,

details: reference variance 

confidence intervals,

solution convergence detection,

optional plots/trend analyses, …

Specifiable levels of predicted accuracy QA/QC use of internal data (msmnt

fidelity requirements.

The essential need for relevant and

verifiable specfifications (requirements)

for both accuracy and pred. accuracy. covariance matrix.

Primary TGD 1 Section 5.1 Sections 5.8 amd 5.9

referrals:

corresponding accuracy and predicted

Estimator characteristics:

Accuracy and Predicted Relative Accuracy.

The Specification of Pred. Accuracy Reqts.

The Assessment of Pred. Accuracy perf.

geolocations: their errors and Predicted Accuaracy:

The difference between the Quality

Assurance (QA) and the Quality

samples of geolocation error via

Control (QC) of estimators and

QA/QC's ensurance of:

accuracy.

"ground truth" for the assessments of 

accuracy and predicted accuracy.

Similar methods as above for Relative

Processes affecting Geolocation Accuracy and Predicted Accuracy and their assessment

The Validation of Pred. Accuracy Reqts.

TGD 2d: Estimators and their QA/QC

Correlated and uncorrelated msmnt

residuals and their mean-value and

residuals) and occasional ground truth.

Levels of confidence in assessments.

Recommended number of independent

TGD 2c: Specification and Validation

The Specification of Accuracy Requirements.

The Validation of Accuracy Requirements.

The Assessment of Accuracy performance.
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Table 4.7.1-3: Overview of the Technical Guidance Documents regarding Processes – TGD 2e: Monte 

Carlo Simulation, and TGD 2e: External Data and its Quality Assurance and Quality Control 

 

TGD document:

Descriptions

and/or outsourcing,

methods for: crowd sourcing, …

independent samples generated NSG use of External data.

based on specifiable predictive

statistics, samples analyzed based The QA/QC of External data within

on sample statistics, effects of the NSG:

errors on nonlinear and/or assessment of the reliability

of the data and its

corresponding geolocation

accuracy/predicted accuracy.

random variables, random vectors,

stochastic processes, random fields.

Related The growing importance of external

concepts and data within the NSG.

details:

lack of pedigree,

lack of predicted accuacy, …

specifiable correlation of errors.

comparison of independent sources

Technique for simple simulation of the

realizations of a random vector consistent

and full covariance matrix presented.

product generation tasks.

Primary TGD 1 Section 5.11 Section 5.12

referrals:

Processes supporting/affecting Geolocation Accuracy and Predicted Accuracy and their assessment

based on Monte Carlo simulation:

for arbitrary distribution.

Assessment of the effects of various error

sources on Accuracy and Predicted Accuracy

External Data and its sources:

Gaussian distribution of errors usually

                complicated systems analyzed.

processes and random fields over

simulated realizations of stochastic

Technique for the fast generation of

TGD 2f: External data and its QA

Simulated errors can correspond to:

modelled but technique also presented

1D to 4D (x ,y, z, time) grids presented:

TGD 2e: Monte Carlo Simulation

within the NSG and corresponding

Difficulties assoicated with its

assessment:

Importance of assessments based on

Importance of management and

and corresponding recommended

over a broad array of applications where

Enables the study of the effects  of errors

with a specified but arbitrary mean-value 

strictly analytic methods are typically not

viable; can also be embeded in various

analyses and procedures.

recommended methodologies.

Recommended future research and

devlopment.

dissemination of assessments
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4.7.2 Detailed Guide to Section 5 of this level 1 Technical Guidance Document 

The following outlines the contents of Section 5 of this document, Methods, Practices, and Applications 

for Accuracy and Predicted Accuracy: 

 Section 5.1: Performance Specification and Validation – describes the methodology for the 

verification, validation, and overall assessment of an NSG Geolocation System’s accuracy and its 

predicted accuracy capabilities 

 Section 5.2: Statistical Error Model Overview – provides an overview of the contents of the 

statistical error model associated with the predicted accuracy of an NSG module’s state vector(s) 

 Section 5.3: Types of representation of Error: Random Vector, Stochastic Process, Random Field 

– describes the various types of representation of errors modeled in the statistical error model 

 Section 5.4: Statistical Categories: Predictive and Sample – provides an overview of the statistical 

error model’s predictive statistics versus sample-based statistics 

 Section 5.5: Error Covariance Matrix – describes the key statistic in the statistical error model, the 

error covariance matrix; how to generate corresponding probability-based error or confidence 

ellipsoids; examples of the importance of generating and using the full error covariance matrix  

 Section 5.6: Scalar Accuracy Metrics: Linear Error (LEXX), Circular Error (CEXX), and Spherical Error 

(SEXX) at specified probability level XX% – how to generate the ubiquitous and probability-based 

scalar accuracy metrics (percentiles) from the error covariance matrix; their desirable features as 

well as their limitations 

 Section 5.7:  Representation/Dissemination of Error Covariance Matrices – an overview of the 

recommended techniques for both the representation and the dissemination of error covariance 

matrices associated with errors represented as random vectors, stochastic processes, and random 

fields; particularly useful for very large error covariance matrices associated with multi-state 

vector error covariance matrices 

 Section 5.8: Rigorous Error Propagation – its definition and overview of its importance, particular 

associated with estimators (e.g., a Weighted Least Squares (WLS) estimator which provides an 

optimal estimate of a state vector’s value when properly modeled); details of the MIG estimator 

 Section 5.9: Estimators: General Overview – an overview of estimators in the NSG; their important 

characteristics and corresponding standard practices for optimality and Quality Assurance (QA) 

and Quality Control (QC) 

 Section 5.10: Accuracy and Statistical Error Model Periodic Calibration – the recommended 

standard practice of the periodic calibration of the error models associated with an NSG system’s 

accuracy and predicted accuracy 

 Section 5.11: Monte-Carlo Simulation of Errors for Complex Systems – the importance of Monte-

Carlo simulation of errors associated with accuracy and predicted accuracy, particularly 

corresponding to “black-box” systems, as well as applications involving large amounts of data or 

non-linear equations; a bathymetric example and a non-linear MIG example 

 Section 5.12: External Data and its Quality Control – overview of potential techniques and 

research for the difficult problem associated with quantifying accuracy and predicted accuracy of 

NSG-external data (e.g., crowd-sourcing) 
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 Section 5.13:  Provenance for Predicted Accuracy –the provenance of predicted accuracy, such as 

inclusion of the time-of-applicability as a standard practice; research for the automatic 

“adjustment” of historical predicted accuracy 

 Section 5.14: Computer System Capabilities – the recommended use of available increased 

computer power associated with accuracy and predicted accuracy processing 

 Section 5.15: Recommended Practices Overview – an overview of the recommended practices 

associated with accuracy and predicted accuracy in the NSG and a brief summary of the contents 

of this document. 

 

5 Methods, Practices and Applications for Accuracy and Predicted 

Accuracy  

5.1 Performance Specification and Validation 
In addition to normal operations, accuracy and predicted accuracy also play a critical role in performance 

specification and validation of an NSG Geolocation System as outlined in Figure 5.1-1. 
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Figure 5.1-1: Validation of Accuracy and Predicted Accuracy Performance Specifications 

The representative state vector 𝑋 in the above figure and its error covariance matrix 𝐶𝜖𝑋 are contained in 

the Exploitation module’s general state SE (Figure 4.1-1).  The representative state vector 𝑋 contains 

independent estimates of multiple geographic locations 𝑋𝑖, and its error covariance 𝐶𝜖𝑋 is a block diagonal 

matrix that contains multiple error covariance matrices 𝐶𝜖𝑋𝑖
 (predicted accuracy) down its main diagonal 

corresponding to the errors in the 𝑋𝑖. 

Error samples correspond to the difference between the estimated geographic locations 𝑋𝑖  and 

corresponding ground truth 𝑋𝑡𝑖.  Sample statistics taken over the error samples are computed and 

compared to specified accuracy requirements, both absolute and relative.  Sample statistics taken over 

error samples normalized using corresponding predicted accuracy statistics (𝐶𝜖𝑋𝑖
 or  𝑒𝑙𝐶𝜖𝑋𝑖𝑘

 ) are also 

computed and compared to specified predicted accuracy requirements.  The latter requirement 

essentially states (quantitatively) that predicted accuracy shall reliably reflect the actual errors 

corresponding to a specific but arbitrary extraction.   
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In general, samples are to be independent, requiring the simultaneous analysis of the multiple individual 

estimated state vectors  𝑋𝑖   and their individual error covariance matrices 𝐶𝜖𝑋𝑖
, each generated using an 

independent set of underlying data. 

Note: the representative state vector 𝑋 and its error covariance matrix 𝐶𝜖𝑋 in Figure 5.1-1 are conceptual 

for ease of illustration; only the locations 𝑋𝑖  and their error covariance matrices 𝐶𝜖𝑋𝑖
 are actually output 

from the Exploitation Module. 

Note: for the assessment of relative accuracy (only) between two different geolocations that are expected 

to be correlated due to common or correlated sensor metadata, either: (1) the geolocations are estimated 

together in the same 𝑋𝑖  and their cross-covariance contained in 𝐶𝜖𝑋𝑖
, or (2) the geolocations are estimated 

in two different 𝑋𝑖  and their cross-covariance computed in a separate process as described in TGD 2d. 

As illustrated in Figure 5.1-1, the Value-Added Processing module may be bypassed in order to test 

exploitation results due to the Collection module only.  In either case, exploitation is actually based on a 

Trusted Exploitation Application, instead of the actual Exploitation module, for independence of the 

validation process.  Additional verification (as opposed to validation) tests can be performed by comparing 

outputs from the Trusted Exploitation Application with corresponding outputs from the Exploitation 

module.  In addition, for some Exploitation modules, the representative state vector 𝑋 and its 

corresponding 𝑋𝑖  contained within, need not correspond to explicit geographic locations, but to any well-

defined state vector with corresponding “ground” truth available. 

TGD 2c (Specification and Validation) covers the above Accuracy and Predicted Accuracy specification and 

validation process in more detail, including the recommended form of the specifications and the number 

of samples and corresponding statistical significance.  In addition, the techniques presented are also 

applicable to the general assessments of both accuracy and the predicted accuracy capabilities of a 

Geolocation System, in addition to the specification and validation of requirements per se.  Reference [5] 

also provides an “easy-to-read” summary of TGD 2c. 

Finally, although not illustrated explicitly in Figure 5.1-1, Standard Application Program Interfaces (APIs) 

are recommended for communication between modules, both operationally and for 

validation/verification; in particular, those associated with state (vector) error models.  This 

standardization helps to ensure compatibility and efficiency between and within various NSG modules. 

5.1.1 The External Data Challenge 

The above performance validation and verification procedures are applicable to NSG self-generated data.  

If data origins and/or value-added processing are external, such as that associated with commodity data, 

crowd-sourcing, and outsourcing, procedures have to be modified in order to best deal with limited 

pedigree, accuracy, and quality assessment data.  This is a significant and relatively new challenge, and is 

discussed in Section 5.12 of this document. 
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5.2 Statistical Error Model Overview 
At the top-level, a statistical error model (see Figure 4.3-1) statistically describes the nx1 error vector 𝜖𝑋 

corresponding to an nx1 state vector 𝑋 as follows: 

 Type of error representation 

 Random Vector (RV) 

 Stochastic Process (SP) 

 Random Field (RF) 

 Category of statistics 

 Predictive 

 Sample  

 Statistics 

 Mean-value, 𝜖𝑋̅̅̅̅ , an (nx1) vector 

 Covariance, 𝐶𝜖𝑋, an (nxn) matrix 

 Optional correlation function 𝜌(𝑞) 

 If stochastic process, 𝑞 is scalar (e.g. delta time) 

 If random field, 𝑞 is mx1 (e.g. delta m-dimensional spatial location) 

 Optional probability distribution or probability density function, 𝑝𝑑𝑓𝜖𝑋 

 A Gaussian (normal) probability distribution or probability density 

function is already completely described by the above mean-value and 

covariance 

Variations or “instances” of the above top-level statistical error model make-up the “tool box” for error 

modeling.   

Note: throughout both this document and various TGD 2 documents, the explicit reference to errors (“𝜖”) 

may be removed from statistic names/symbols for convenience, .e.g., 𝐶𝜖𝑋 → 𝐶𝑋. 

The statistical error model’s Type of error representation is specified as either a Random Vector (RV), 

Stochastic Process (SP), or Random Field (RF).  A 𝑛 × 1 random vector contains 𝑛 random variables, and 

both a stochastic process and a random field consist of collections of random vectors. These various 

representations are discussed in detail in Section 5.3, and their accompanying statistics are tailored to the 

type of representation. 

The statistical error model’s Category of statistics is specified as either predictive or sample:   

 Predictive statistics correspond to the mathematical modeling of assumed a priori error 

characteristics 

 Sample statistics correspond to actual samples of the error.   

The mean value for error is almost always zero for predictive statistics and typically not specified; if a non-

zero error was predicted, it would simply be subtracted from 𝑋 prior to further processing and hence, 

become zero.  Also, the probability distribution need not be specified unless probabilities are to be 
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assigned.  When not specified but needed, it is typically assumed a Gaussian or Normal probability 

distribution.  Finally, regardless the error model’s category of statistics, the error covariance matrix 

describes the expected magnitude of the error vector 𝜖𝑋 and the inter-relationship of error among its n 

components.  The error covariance matrix is assumed valid, i.e., positive definite, and hence, invertible.   

Note that the above state and error vectors 𝑋 and 𝜖𝑋 are representative or “symbolic”, in that, for an 

actual system’s module, they may consist of a collection of separate and independent state vectors.  They 

may also be a concatenation (stacking) of individual yet related (correlated) state vectors, i.e., 

𝜖𝑋 = [𝜖𝑋1
𝑇 . . 𝜖𝑋𝑚

𝑇 ]𝑇, where 𝜖𝑋𝑖, 𝑖 = 1, . . , 𝑚, is of dimension 𝑛𝑖 × 1, and superscript 𝑇 indicates vector 

transpose.  Corresponding 𝑋 and 𝜖𝑋 are termed the “multi-state vector” and the “multi-state vector 

error”, respectively. 

Section 5.3 now goes on to detail the types of error representation specifiable by the statistical error 

model (RV, SP, RF).  Examples are provided, including the corresponding predictive statistics and their 

metric values for these specific examples.  Following that, Section 5.4 further details the statistical error 

model’s category of statistics (predictive, sample) and the corresponding statistics themselves. It also 

provides an introduction to the key statistic of the error model – the error covariance matrix, defined in 

detail in Section 5.5. 

5.3 Types of Error Representation: Random Vector, Stochastic Process, 

Random Field 
As outlined in Section 5.2, a statistical error model’s type of error representation corresponds to either a 

random vector, stochastic process, or random field.  The error to be represented corresponds to an error 

𝜖𝑋 in a state vector 𝑋, although simply referenced to as a random vector 𝜖𝑋 or a collection of such random 

vectors below without reference to the state vector itself: 

 An overview regarding each type of representation is now given in order to provide more context for the 

remainder of this document.  Some familiarity with probability and random variables is assumed, with 

[12] and [10] good references.  Further details regarding all aspects of the error model are also provided 

in TGD 2a-2f. 

A random vector (RV) contains from 1 to 𝑛 components, each a random variable.  A realization of a RV 

corresponds to specific values for the vector (components) for a given event, aka “trial” or “experiment”.  

Multiple realizations are assumed independent, i.e., their vector (random variable) values are 

uncorrelated.  That is, given the value of one realization provides no additional information regarding the 

value of another realization.  Important descriptive statistics of a RV are its mean (vector) value and the 

error covariance matrix about the mean.  These statistics can be predictive or sample-based.  Most 

statistics we deal with in this document are predictive.  Because we are dealing with errors, we describe 

the random vector as 𝜖𝑋, 𝑛 × 1.  If it has more than one component, i.e., 𝑛 > 1, the components (random 

variables) can be correlated between all of their possible pairs.  This is termed “intra-state vector 

correlation”.   
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Note: a random variable can also be considered a random vector with the number of components or 

elements n=1.  

A stochastic process (SP) is a collection of random vectors (RV), parameterized by a 1d quantity, typically 

time.  For a given realization of the stochastic process, the individual random vectors 𝜖𝑋𝑖 are correlated 

with each other, i.e., temporally correlated.  More precisely, the various random variables making up 𝜖𝑋𝑖 

are correlated with the various random variable making up 𝜖𝑋𝑗, 𝑗 ≠ 𝑖.    

If the random vectors 𝜖𝑋𝑖 are collected into one large random vector 𝜖𝑋, the temporal correlation 

between the various 𝜖𝑋𝑖 is also termed “inter-state vector” correlation.  If the statistics for the various 

random vectors 𝜖𝑋𝑖 are invariant over time, the stochastic process is termed (wide-sense) stationary.  An 

example of a stochastic process is the time series of sensor position error (3d) in satellite-based image 

metadata.  It has three components, a mean value of zero, and can be modeled as approximately 

stationary in many instances, although not required. 

A random field (RF) is an extension of a stochastic process parameterized by an N-dimensional vector 

quantity q, instead of 1d time.  A typical application corresponds to N=2 or N=3, corresponding to a 

horizontal or three-dimensional position on the earth-surface.  Also, N=4 typically corresponds to a 

parameter vector q (4 components) corresponding to three components of position and one of time.  In 

general, two different random vectors from the same realization of the random field are spatially 

correlated.  For example and for N=2, one random vector corresponds to the horizontal location 𝑞1 and 

the other to horizontal location 𝑞2,  and the two random vectors are correlated, typically with decreasing 

correlation or similarity with increasing distance between the two locations.  

Note: regarding symbology, N corresponds to the number of spatial dimensions in a random field, n 

corresponds to the number of elements or components in a random vector. 

5.3.1 Example for the direct comparison between types of representation 

Hypothetical realizations corresponding to an RV, SP, and RF, the latter two at discrete times (N=1) and 

discrete horizontal locations (N=2), respectively, are presented in Figure 5.3.1-1.  All three sets of 

realizations correspond to two error components: 𝜖  and 𝜖 , i.e., 2d random vectors (n=2).  Let us term 

each set of realizations a “case”. 

For each case, realizations are independent (uncorrelated) from one another.  For example, one 

realization of a random vector could correspond to the errors in an estimator’s solution for a 2d 

geolocation, and another realization to another extraction from the same estimator for the same 

geolocation but using an independent set of measurements (errors) with the same predictive statistics as 

the first; and hence, the same predictive statistics for solution error. 
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Figure 5.3.1-1: Multiple Realizations for a two-component RV, SP, and 2D RF; no intra-state correlation 

Figure 5.3.1-2 presents the corresponding predictive statistics for each case, where the various 

realizations were generated consistent with these predictive statistics.  For all three cases, both 𝜖  and 

𝜖  have a mean-value of zero and a standard deviation of 2 meters.  These error components 𝜖  and 𝜖  

are also uncorrelated, i.e., there is zero intra-state vector correlation.  The corresponding error covariance 

matrix is diagonal with 22 = 4 meters-squared down the diagonals. 

In addition, the inter-state vector (temporal) correlation for the SP is modeled as a decaying exponential 

in delta time, with time constant TC=100 seconds.  The inter-state vector (horizontal position) correlation 

for the RF is modeled as a product of two decaying exponentials, one in delta x-position and one in delta 

y-position, with distance constants of 150 m and 100 m, respectively.  The cross-covariance as a function 

of delta time or delta position is also termed the covariance function, and equal to the common error 

covariance matrix at delta equal to zero. 

Realization: Random Vector (2d): Stochastic Process (2d): 2D Random Field (2d):
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Figure 5.3.1-2: Corresponding Error Model predictive statistics; 
the SP is stationary and the RF is homogeneous 

5.3.2 Examples for further insight 

For further insight, additional and higher-fidelity examples are now provided corresponding to a RV, SP, 

and RF.  The first example corresponds to a two-component RV and gives further insight into the meaning 

of intra-state (component) correlation.  In Figure 5.3.2-1, there are two sets of 200 independent 

realizations of the RV, generated (simulated) consistent with the common predictive statistics for each 

set.  The blue dots correspond to the RV predictive statistics of Figure 5.3.1-2.  The red dots correspond 

to the same statistics except that intra-state correlation was changed from zero to a relatively high 

positive value with correlation coefficient 𝜌𝜖𝑥𝜖𝑦 = 0.9.  For a given realization, whatever the value of 𝜖 , 

the corresponding value for 𝜖  is expected to be similar, born-out by the 45 degree “red-line” of dots 

corresponding to the samples. 
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Figure 5.3.2-1: Independent realizations of a RV (2d): uncorrelated error 
components (blue), correlated error components (red) 

Figure 5.3.2-2 corresponds to three independent realizations of a SP consisting of one-component 𝜖  only, 

with a mean value of zero and standard deviation of 2 m.  The temporal correlation was specified as in 

Figure 5.3.1-2 corresponding to a time constant TC=100 sec, but applicable to 𝜖  only.  Note that sensor 

position metadata corresponding to commercial satellite imagery exhibits this general type of behavior.  

Figure 5.3.2-3 corresponds to one realization of the same SP, but with essentially zero temporal 

correlation (TC=1 sec) for comparison – note the high frequency variation of the realization over time. 

Figure 5.3.2-2: Three independent realizations 
of a SP (1d)

 
Figure 5.3.2-3: One realization of a SP (1d), no 

temporal correlation
 

Figure 5.3.2-4 corresponds to one realization of a 2D RF (1d), with one error component 𝜖 , and 

represented using a heat chart.  The predictive statistics correspond to a mean value of zero, a standard 

deviation of 10 meters, and spatial correlation represented as 𝜌(𝑞) = 𝑒 | 𝑥|/19.5𝑒 | 𝑦|/19.5.  This RF could 

represent vertical Digital Elevation Model (DEM) error spatially correlated across a local horizontal plane.  

If the DEM was extracted using a stereo pair of images, inter-state (spatial) correlation is due to the 
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common effects of image metadata errors across the pixels in the image/location in the horizontal plane.  

Note that in the figure, distance between grid points is 1 m in each horizontal direction. 

 

Figure 5.3.2-4:  One Realization of a 2D RF (1d) 

In the above examples, the SP was (wide-sense) stationary (predictive statistics invariant across time) and 

the RF was (wide sense) homogeneous, an extension of stationarity to multiple dimensions.  Non-

stationarity and non-homogeneity may also be applicable in some cases, as discussed in some of the TGD 

2 documents. 

5.3.3 Additional terminology and the inclusion of Correlated Error 

In the previous subsection, realizations of a random vector (RV), stochastic process (SP), and random field 

(RF) were presented.  They were simulated based on corresponding predictive statistics which included 

intra-state vector correlation and inter-state vector correlation, the latter due to temporal or spatial 

correlation.   

The effects of these correlations were illustrated in the samples or realizations presented in Figures 5.3.2-

1 through 5.3.2-4.  Correlation or statistical interdependence is key to reasonable and realistic modeling 

of errors in the NSG.  It can have a very large effect on processing results and predicted accuracies as 

illustrated in these figures and demonstrated more specifically later.   

In years past, definitions for categories of error were sometimes simply limited to bias error and random 

or uncorrelated error, or their combined effect.  These are now augmented with the inclusion of 

“correlated error” for more realistic representation in conjunction with the use of RV, SP, and RF 

representations.   

In Appendix A and in TGD 1G (Glossary), we define three general categories of error relevant to NSG 

accuracy and predicted accuracy: (1) bias error, (2) random error, and (3) correlated error.  Various 

combinations of errors from these categories are then represented as either a: (1) random vector (RV), 
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(2) stochastic process (SP), or (3) random field (RF), as appropriate, i.e., there are three different types of 

error representation.  Also, recall that SP and RF representations consist of collections of random vectors, 

and that a random variable can be considered a random vector consisting of one component.   Therefore, 

a random vector is the key element for all types of error representation. 

The “mapping” between error category (bias, random, correlated) and error representation (RV, SP, RF) 

is summarized as follows: 

 A bias error corresponds to a representation’s non-zero mean-value. 

 A random error corresponds to a random vector from the representation minus the 

representation’s mean-value. 

o A random vector minus its mean-value is uncorrelated across different realizations by 

definition. 

 A realization corresponds to an independent “trial” or “event” or “experimental 

outcome”. 

 A correlated error corresponds to a correlated random vector from the representation minus the 

representation’s mean-value. 

o If correlated, a random vector minus its mean-value is correlated within the same 

realization. 

o Examples:  

 One component of a random vector is correlated with a different component 

(intra-state vector correlation). 

 One random vector is correlated with different random vectors in the same 

realization of a collection of random vectors in a stochastic process or a random 

field (inter-state vector correlation).  In the examples of Section 5.3.1, such 

correlation was quantified as a decaying exponential that was a function of delta 

time or spatial distance. 

o In years past, a correlated error was sometimes simply represented indirectly as the sum 

of a random error and a bias error.  Thus, two errors were considered correlated if and 

only if they shared a common bias.  This is too simplistic and inappropriate. 

Returning to terminology in general, the relatively common term “systematic error” is neither a category 

nor a representation of error per se.  It is a characteristic of them or an effect from them.  For example, 

the errors represented by a stochastic process or random field appear systematic across time or space, 

respectively, due to temporal or spatial correlation, respectively.  The error in a frame image-based sensor 

model’s adjustable parameter for focal length has a scaling effect on extracted ground locations that is 

systematic – the closer the ground point to the image footprint’s boundary, the larger the effect – see 

TGD 1G (Glossary) for further details. 

Finally, it is possible to “transform” the representation of a predictive error from a stochastic process or 

random field to a single random vector and vice versa.  For example, sensor metadata errors may be 

represented initially as a stochastic process (SP) and output as such in a Collection module corresponding 

to a time history of images, and then adjusted later in a Value-Added Processing module.  The latter 
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includes image-specific corrections for all images as part of a large combined state vector with 

corresponding error covariance matrix from an estimation process (e.g., Weighted Least Squares).  As 

such, the sensor metadata error is now more conveniently thought of and represented as a single random 

vector (RV) with many components.   

Note:  

(1) Categories of error are different than categories of statistics, the latter previously defined in Section 

5.2 and detailed in Section 5.4. 

(2) For sample statistics, a non-zero sample mean does not necessarily imply that the underlying error 

process includes a bias; that is, a non-zero sample mean can simply be due to the lack of statistical 

significance due to too few samples or to samples that were not independent, e.g., limited to the same 

realization of a stochastic process. 

 (3) The bias error as defined in the paragraphs above is different than a “random bias” sometimes 

applicable to a stochastic process or a random field if so specified, i.e., the mean-value of the stochastic 

process or random field varies from one realization to the next, but for a given realization, is considered 

a fixed bias to all corresponding random vectors in the realization.  A random bias is considered a non-

baseline exception in both this document and the TGD 2 documents. 

5.4 Statistical Categories: Predictive and Sample 
As discussed earlier, a statistical error model’s statistics are categorized as either predictive or sample.  

Predictive statistics are “modeled” statistics, in that they correspond to an a priori mathematical model 

or are the output of a computational process, like an estimator.  They are in contrast to sample statistics, 

which are typically generated “off-line” from a set of sampled errors using corresponding “ground truth”.  

Of course, there is interplay between the two types of statistics: predictive statistics affect system errors 

which are then occasionally sampled.  And sample errors can be used to better refine the predictive 

statistics and underlying predictive error models. 

TGD 2a (Predictive Statistics) presents predictive statistics in detail, and TGD 2b (Sample Statistics) 

presents sample statistics in detail. 

The use of the predictive statistics is more prominent in this document, although sample statistics do play 

an important role in: (1) Validation and Verification testing, (2) empirical experimentation in support of 

the development of appropriate predictive statistics,  (3) Monte-Carlo simulation of errors and their 

effects, and (4) evaluation of accuracy for products generated external to the NSG.  The third application 

of sample statistics (Monte-Carlo simulation) is discussed further in Section 5.11 of this document, and 

the fourth application discussed further in Section 5.12 of this document. 

Note that predictive statistics are almost always associated with predicted accuracy.  Sample statistics can 

be associated with either predicted accuracy or accuracy per se.  If the latter, the sample-based mean-

value and error covariance matrix are typically used to compute corresponding probability of error, 

assuming a Gaussian probability distribution of errors.  An alternative is to use order statistics of the 
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samples to compute probability (percentiles) directly, as detailed in TGD 2b.  In this approach, no 

assumptions regarding probability distributions are required. 

Sections 5.5 – 5.8 of this document now go on to present an overview of the key predictive statistic: the 

error covariance matrix.  However, it should be noted that a sample-based error covariance matrix, and 

corresponding sample mean, CE, LE, etc., can also be generated when appropriate as detailed in TGD 2b 

(Sample Statistics).  In addition, these sample-based statistics should also include corresponding 

confidence intervals, or their equivalent, essentially specifying the confidence in their computed values 

as a function of the number of independent samples used.  More correctly, as a function of the number 

of independent and identically distributed (i.i.d.) samples used, as defined and discussed in TGD 2b. 

5.5 Error Covariance Matrix 
The error covariance matrix 𝐶𝜖𝑋 , or more conveniently termed  𝐶𝑋 , is the “key ingredient” in any 

statistical error model.  It contains significant information regarding errors.   Correspondingly, in 

probability theory, the inverse of the error covariance matrix 𝐶𝑋
 1 is termed the “information matrix”.   

As we will see later, 𝐶𝑋
 1 is also termed the “weight matrix” when corresponding to the errors in 

measurements used by an optimal estimator - the “smaller” the covariance matrix, the “larger” its inverse, 

hence, the more information contained in the corresponding measurements and the more weight they 

have on the estimator’s solution.  

The error covariance matrix is more formally defined as follows: 

Single state vector 

Let 𝑋 be an 𝑛 1 single state vector and let  𝑛 × 1 𝜖𝑋 represent its corresponding errors, i.e., 𝜖𝑋 = 𝑋  

𝑋𝑡𝑟𝑢𝑒.  Let 𝐶𝑋 represent the state vector’s 𝑛 × 𝑛 (symmetric) error covariance matrix: 

𝐶𝑋 = 𝐸{𝜖𝑋𝜖𝑋𝑇} = 𝐸 {[

𝜖 1
2 𝜖 1𝜖 2

𝜖 2𝜖 1 𝜖 2
2

. . 𝜖 1𝜖 2

. . 𝜖 2𝜖 𝑛
. . . .

𝜖 𝑛𝜖 1 𝜖 𝑛𝜖 2

. . . .

. . 𝜖 𝑛
2

]},  

where 𝜖𝑋 = [𝜖 1 𝜖 2 . . 𝜖 𝑛]𝑇, and where it is assumed that 𝜖𝑋 has a mean-value equal to zero, i.e., 

𝐸{𝜖𝑋} = 𝜖𝑋̅̅̅̅ = 0𝑛×1.  The superscript 𝑇 corresponds to vector transpose, and 𝐸{ } corresponds to 

expected value.  Note that expected value is applicable to each entry in the covariance matrix, e.g. 𝐸{𝜖 1
2}.  

Also, if the mean-value is not zero, 𝐶𝑋 = 𝐸{(𝜖𝑋  𝜖𝑋̅̅̅̅ )(𝜖𝑋  𝜖𝑋̅̅̅̅ )𝑇}. 

Simply put, the above error covariance matrix quantifies the expected magnitude of each component of 

error and their interrelationships.  The following is an example of an error covariance matrix, where 𝑋 

corresponds to a 3d geographic location: 

𝐶𝑋 = 𝐸 {[

𝜖 2 𝜖 𝜖 𝜖 𝜖 

𝜖 𝜖 𝜖 2 𝜖 𝜖 

𝜖 𝜖 𝜖 𝜖 𝜖 2

]} = [

𝜎𝜖𝑥
2 𝜌𝜖𝑥𝜖𝑦𝜎𝜖𝑥𝜎𝜖𝑦 𝜌𝜖𝑥𝜖𝑧𝜎𝜖𝑥𝜎𝜖𝑧

. 𝜎𝜖𝑦
2 𝜌𝜖𝑦𝜖𝑧𝜎𝜖𝑦𝜎𝜖𝑧

. . 𝜎𝜖𝑧
2

], where 
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the dots in the matrix represent symmetric entries, where the symbols 𝜎2 represents variance, 𝜎 

represents standard deviation, and 𝜌 represents correlation coefficient, discussed in more detail later.  As 

presented in the general case earlier, the mean-value of error is also assumed equal to zero – almost 

always the case for predictive statistics because if it were not, its value could simply be subtracted from 

𝑋 such that the mean-value of error becomes zero, as desired.   In addition, recall that the error in a state 

vector is considered a random vector (RV), as discussed in Section 4.  The off-diagonal terms in the error 

covariance matrix correspond to intra-state vector correlation. 

The following generalizes the above to multi-state vectors, presents a little more detail, and shares some 

of the context-dependent symbology. 

Multi-state vector 

More generally, let 𝑋𝑖  be a 𝑛𝑖 × 1 state vector, and 𝜖𝑋𝑖 represent the corresponding errors in the state 

vector.   

Let 𝜖𝑋 = [𝜖𝑋1
𝑇 . . 𝜖𝑋𝑚

𝑇 ]𝑇 represent the “stacked” 𝑛 × 1 multi-state vector error corresponding to 𝑚 

individual state vectors, where the superscript 𝑇 indicates transpose.  Let 𝐶𝑋 represent the corresponding 

𝑛 × 𝑛 multi-state vector (symmetric) error covariance matrix, where 𝑛 = 𝑛1+. . +𝑛𝑚: 

𝐶𝑋 = 𝐸{𝜖𝑋𝜖𝑋𝑇} = 𝐸 {[

𝜖𝑋1𝜖𝑋1
𝑇 𝜖𝑋1𝜖𝑋2

𝑇

𝜖𝑋2𝜖𝑋1
𝑇 𝜖𝑋2𝜖𝑋2

𝑇
. . 𝜖𝑋1𝜖𝑋𝑚

𝑇

. . . .
. . . .

𝜖𝑋𝑚𝜖𝑋1
𝑇 𝜖𝑋𝑚𝜖𝑋2

𝑇
. . . .
. . 𝜖𝑋𝑚𝜖𝑋𝑚

𝑇

]} = [

𝐶𝑋1 𝐶𝑋12

. 𝐶𝑋2

. . 𝐶𝑋1𝑚

. . 𝐶𝑋2𝑚
. .
. .

. . . .
. 𝐶𝑋𝑚

].  

  

Note that 𝐶𝑋𝑖 is the 𝑛𝑖 × 𝑛𝑖 error covariance matrix for state vector 𝑖; 𝐶𝑋𝑖𝑘 is the 𝑛𝑖 × 𝑛𝑘 error cross-

covariance matrix between state vectors 𝑖 and 𝑘, and 𝐸 is the expected-value operator.  The 휀𝑋𝑖 are 

random vectors, and the error covariance matrices 𝐶𝑋𝑖 and 𝐶𝑋𝑖𝑗 are typically predictive statistics based on 

assumed (but not necessarily specific) underlying probability distributions, and not sample statistics.  The 

single dots “.” in the above equation indicate symmetric entries (e.g., 𝐶𝑋21 = 𝐶𝑋12
𝑇 ), and the double dots 

“..” indicate “continue the pattern”.  𝐶𝑋 is a symmetric, positive definite matrix (strictly positive 

eigenvalues), i.e., invertible and a “valid” error covariance matrix.  Note that because the above reference 

predictive errors, their mean values are assumed zero, i.e., 𝐶𝑋𝑖𝑗 = 𝐸{(𝜖𝑋𝑖  𝜖𝑋𝑖
̅̅ ̅̅ )(𝜖𝑋𝑘  𝜖𝑋𝑘

̅̅ ̅̅ ̅)𝑇} =

𝐸{(𝜖𝑋𝑖)(𝜖𝑋𝑘)
𝑇} 

Note: the above notation 𝐶𝑋1 and 𝐶𝑋12, for example, are simplified versions of corresponding previous 

notation, 𝐶𝜖𝑋1
 and 𝐶𝜖𝑋12

 , respectively, and used for convenience.  

The above error covariance formulation 𝐶𝑋 is a natural representation for a SP or RF, which correspond 

to collections of RV’s 𝜖𝑋𝑖, 𝑖 = 1, . . , 𝑚, with error covariance matrix 𝐶𝑋𝑖 and cross-covariance matrix 𝐶𝑋𝑖𝑗, 

𝑖, 𝑗 = 1, . . , 𝑚.  The cross-covariance matrices correspond to inter-state vector correlation.  The 

formulation is also applicable to one or to an arbitrary collection of RVs, not necessarily associated with a 

SP or RF. 
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If we assume a Gaussian multi-dimensional distribution of errors, 𝐶𝑋 specifies the entire joint probability 

distribution; however, assumption of a specific distribution is not required unless actual probabilities are 

to be assigned to various metrics. 

5.5.1 Error Ellipsoids  

An error ellipsoid is a graphical representation of the error covariance 𝐶𝑋 and an intuitive representation 

of solution (predicted) accuracy.  It displays, among other things, the directions of greatest and least 

expected solution error (magnitude).  An error ellipsoid typically references a 3d error, either considered 

as corresponding to 3 × 1 𝜖𝑋 or a 3 × 1 𝜖𝑋𝑖, per the previous section, with corresponding error covariance 

𝐶𝑋 or 𝐶𝑋𝑖 of the previous section.  A Gaussian multi-variate distribution of errors is also assumed since the 

ellipse is associated with a specified probability, as detailed below. 

The error ellipsoid presented in Figure 5.5.1-1 corresponds to a geographic 3d location error and was 

computed as a 90% (0.9p) error ellipsoid, which means that there is a 90% probability that the location 

(solution) error is within the ellipsoid.  Alternatively, if the 90% error ellipsoid is centered at the target 

solution X instead of zero, there is a 90% probability that the true target location is within the ellipsoid.  

When centered at the target solution, the error ellipsoid is typically called a confidence ellipsoid.  We are 

90% confident that the true target location is within the 90% confidence ellipsoid.   

 

Figure 5.5.1-1:  The 90% (0.9p) probability error ellipsoid corresponding and equivalent to  𝐶𝑋 

The specific underlying error covariance matrix in this example is equal to: 

𝐶𝑋 = [

𝜎𝜖𝑥
2 𝜌𝜖𝑥𝜖𝑦𝜎𝜖𝑥𝜎𝜖𝑦 𝜌𝜖𝑥𝜖𝑧𝜎𝜖𝑥𝜎𝜖𝑧

. 𝜎𝜖𝑦
2 𝜌𝜖𝑦𝜖𝑧𝜎𝜖𝑦𝜎𝜖𝑧

. . 𝜎𝜖𝑧
2

] = [
102 0.75 ∙ 10 ∙ 12 0.95 ∙ 10 ∙ 9
. 122 0.8 ∙ 12 ∙ 9
. . 92

]. 

The various 𝜌 designated in the error covariance matrix correspond to the intra-state correlation 

coefficient between the designated error components. 

The general equation for an error ellipsoid is presented in Figure 5.5.1-2: 
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Figure 5.5.1-2:  Equation for the Error Ellipsoid 

The value for d in the above equation is different for different desired levels of probability and dimension 

n: for a 90% level and 1D (line), 2D (ellipse), 3D (ellipsoid), d is equal to 1.64, 2.15, and 2.50, respectively.  

This also assumes a (multi-variate) Gaussian distribution of errors.  See Section 5.3 of TGD 2a for 0.5. 0.9. 

0.95, 0.99, and 0.999 probability levels, more significant digits for d, accommodation for an atypical non-

zero mean-value, as well as the general equation for an arbitrary probability level.  All error ellipsoids in 

this document correspond to 90% probability unless specifically designated otherwise.  

Note, as mentioned previously, given the desired level of probability, an error ellipsoid and its 

corresponding error covariance matrix are equivalent.   The error covariance matrix (along with the 

probability level or d) is used to compute the ellipsoid via the general equation of Figure 5.5.1-2.  Although 

not as obvious, the error covariance matrix can also be derived from the corresponding error ellipsoid - 

see Section 5.3.4 of TGD 2a for details. 

5.5.2 Full error covariance matrix needed 

The full error covariance matrix is needed for the statistical representation of both absolute and relative 

errors.  This is best illustrated when an individual state vector corresponds to the 3d geographic location 

of a feature of interest, and the overall state vector corresponds to the concatenation of two state vectors 

corresponding to two different 3d features or locations.   

Let the error covariance matrix for the first location correspond to: 

𝐶𝑋1 = [
202 0.98 ∙ 20 ∙ 10 0.90 ∙ 20 ∙ 10
. 102 0.90 ∙ 10 ∙ 10
. . 102

] = [
400 196 180
. 100 90
. . 100

], with units of meters-squared. 

Figure 5.5.2-1 presents the corresponding and correct error ellipsoid, typical for a 3d location extracted 

from a stand-off EO imaging sensor.  If instead of the full 𝐶𝑋1, assume that intra-state (component) 

correlations were ignored or set to zero instead of the correct values of  0.98 and  0.90, i.e., 𝐶𝑋1 was 

replaced by its diagonal matrix counterpart for simplicity.  The corresponding error ellipsoid is presented 

in Figure 5.5.2-2 – note the loss of correct expected magnitude and directionality of errors when the full 

𝐶𝑋1 is not used. 

                            The general equation for an error ellipsoid is given by:  𝜖𝑋𝑇𝐶𝑋
 1𝜖𝑋 = 𝑑2 

For dim 𝑛 = 1:                        For dim 𝑛 = 2:                             For dim 𝑛 = 3:  

𝜖𝑋 = 𝜖                                   𝜖𝑋 = [𝜖 𝜖 ]𝑇                       𝜖𝑋 = [𝜖 𝜖 𝜖 ]𝑇  

         𝐶𝑋 = [𝐸{𝜖 2}]        𝐶𝑋 =  
𝐸{𝜖 2} 𝐸{𝜖 𝜖 }

. 𝐸{𝜖 2}
             𝐶𝑋 = [

𝐸{𝜖 2} 𝐸{𝜖 𝜖 } 𝐸{𝜖 𝜖 }

. 𝐸{𝜖 2} 𝐸{𝜖 𝜖 }

. . 𝐸{𝜖 2}

] 



 
 
 

 

Figure 5.5.2-1: Correct Error ellipsoid for point 1 

 

Figure 5.5.2-2: Incorrect Error ellipsoid for point 1 

We assume a similar (but not exactly the same) error covariance matrix  𝐶𝑋2 for another ground point 

extracted from the same image (plus DTED), with corresponding correct error ellipsoid presented in Figure 

5.5.2-3. 

 

Figure 5.5.2-3:  Correct Error Ellipsoid for point 2 

We also assume a cross-covariance 𝐶𝑋12  between the 3d errors at the two locations with common inter-

state correlation of 0.9 across all components.  The availability of 𝐶𝑋1 , 𝐶𝑋2, and 𝐶𝑋12  allows for 

computation of the relative error covariance matrix   𝑒𝑙𝐶𝑋12, as documented in TGD 2a.  This error 

covariance matrix corresponds to the relative error (𝜖𝑋1  𝜖𝑋2).  Note that (detailed in TGD 2a, 

subsection 5.5.4): 

𝐶𝑋 =  
𝐶𝑋1 𝐶𝑋12

. 𝐶𝑋2
  (6x6), and  𝑒𝑙𝐶𝑋12 = 𝐶𝑋1 + 𝐶𝑋2  𝐶𝑋12  𝐶𝑋21 (3x3). 

Figure 5.5.2-4 presents the corresponding 90% relative error ellipsoid for points 1-2 computed from 

 𝑒𝑙𝐶𝑋12. Note its smaller size as compared to Figures 5.5.2-1 and 5.5.2-3, i.e., due to positive correlations: 
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common 3d errors in the two locations cancel statistically with a resultant smaller error covariance and 

error ellipsoid.    

 
Figure 5.5.2-4: Correct Relative Error Ellipsoid for points 1-2 

Finally, Figures 5.5.2-5 and 5.5.2-6 illustrate the incorrect 90% relative error ellipsoids for points 1-2 

obtained if the full 6 6 𝐶𝑋 contains only the correct diagonal blocks (no inter-state correlation, i.e., 𝐶𝑋12 =

0 ), and only the correct diagonals (no intra-state or inter-state correlations, i.e., 𝐶𝑋 a diagonal matrix), 

respectively. 

 

Figure 5.5.2-5: Incorrect Relative Error Ellipsoid 
(diagonal blocks) 

 

Figure 5.5.2-6: Incorrect Relative Error Ellipsoid 
(diagonals only)

See reference [3] for more details regarding the above example. 

As illustrated in this subsection, the output and use of the correct multi-state vector error covariance 

matrix is critical for a correct and informed assessment of both absolute and relative accuracy, i.e., for 

reliable predicted absolute accuracy and for reliable predicted relative accuracy.  Although presented for 

location errors specifically, this same concept and conclusions are applicable to an arbitrary multi-state 

vector error 𝜖𝑋, made-up of various arbitrary individual state vector errors 𝜖𝑋𝑖. 
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5.6 Scalar Accuracy Metrics: Linear Error, Circular Error, and Spherical Error  
Scalar accuracy metrics are ubiquitous across the NSG and are used to quantify location accuracy at a 

specified level of probability, assumed equal to 0.90 or 90%, if not specified explicitly.  Scalar accuracy 

metrics can be either predictive statistics or sample statistics.  The calculations of scalar accuracy metrics 

are detailed in TGD 2a for predictive statistics, and in TGD 2b for sample statistics.   

The definitions of scalar accuracy metrics are presented below, along with an overview of their 

calculations as predictive statistics, which also assume a (multi-variate) Gaussian distribution of errors. 

 The scalar accuracy metric Linear Error (LE) corresponds to a vertical error and is computed from 

the lower right 1  1 portion of the full 3  3 error covariance matrix 𝐶𝑋.  LE corresponds to the 

length of a vertical line (segment) such that there is a 90% probability that the absolute value of 

vertical error resides along the line.  If the line is doubled in length and centered at the target 

solution, there is a 90% probability the true target vertical location resides along the line.   

 The scalar accuracy metric Circular Error (CE) corresponds to horizontal error and is computed 

from the upper left 2  2 portion of the full 3  3 error covariance matrix 𝐶𝑋.  CE corresponds to 

the radius of a circle such that there is a 90% probability that the horizontal error resides within 

the circle, or equivalently, if the circle is centered at the target solution, there is a 90% probability 

the true target horizontal location resides within the circle. 

 The scalar accuracy metric Spherical Error (SE), corresponds to 3d error and is computed from the 

full 3  3 error covariance matrix 𝐶𝑋.  SE corresponds to the radius of a 3D sphere such that there 

is a 90% probability that 3d error resides within, or equivalently, if the sphere is centered at the 

target solution, there is a 90% probability the true target location resides within the sphere. 

Note that we have assumed that the underlying  - -  coordinate system is a local tangent plane system, 

i.e.,   and   are horizontal components and   the vertical component.  If not, the error covariance matrix 

must first be converted to correspond to such a system prior to computation of LE, CE, or SE. 

Scalar accuracy metrics are easy to understand and are in common use for military applications.  Also, LE 

and CE are sometimes used together to form a “CE-LE cylinder” in preference over SE in order to represent 

3d accuracy, as illustrated later. 

LE, CE, and SE are also convenient approximations to various error ellipsoids (line, ellipse, ellipsoid, 

respectively) that can also be generated from portions of the underlying 3  3 error covariance matrix 𝐶𝑋.  

Like the scalar accuracy metrics, the error ellipsoids have an associated specified level of probability 

(default 90%).  Unlike the scalar accuracy metrics (except LE), the error ellipsoids are equivalent to the 

underlying error covariance and not “approximations”. 

Figures 5.6-1 and 5.6-2 present examples of CE and a CE-LE cylinder, respectively, computed from the 

following underlying error covariance matrix:   
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𝐶𝑋 = [

𝜎𝜖𝑥
2 𝜌𝜖𝑥𝜖𝑦𝜎𝜖𝑥𝜎𝜖𝑦 𝜌𝜖𝑥𝜖𝑧𝜎𝜖𝑥𝜎𝜖𝑧

. 𝜎𝜖𝑦
2 𝜌𝜖𝑦𝜖𝑧𝜎𝜖𝑦𝜎𝜖𝑧

. . 𝜎𝜖𝑧
2

] = [
102 0.75 ∙ 10 ∙ 12 0.95 ∙ 10 ∙ 9
. 122 0.8 ∙ 12 ∙ 9
. . 92

]. 

 

The figures include a corresponding error ellipse and ellipsoid, respectively, for comparison. 

 

 
Figure 5.6-1: CE vs ellipse 

 

Figure 5.6-2: CE-LE cylinder vs 3D error ellipsoid 
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5.6.1 Desirable Characteristics of Scalar Accuracy Metrics 

A desirable feature of scalar accuracy metrics is that they provide a natural representation of accuracy 

and a convenient summary of predicted accuracy.  In fact, by definition, they have a specified probability 

of error associated with them and correspond to an easy to understand radial error (vertical, horizontal, 

or spherical).  As mentioned earlier, 90% probability is the assumed default, but can be specified 

otherwise; for example, CE_95 corresponds to Circular Error at the 95% probability level. 

Of course, scalar accuracy metrics refer to the absolute accuracy of a 3d location.  In addition, scalar 

relative accuracy metrics (rel LE, rel CE, and rel SE) are also applicable and easily computed as detailed in 

TGD 2a as convenient summaries of predicted relative accuracy between two 3d locations. 

Scalar accuracy metrics are convenient, one-number summaries of accuracy: easy to understand, and to 

picture.  They are ubiquitous across the NSG; hence the need for standardized computation as detailed in 

TGD 2a for predictive statistics and TGD 2b for sample statistics.  They are also tied to ordinance 

characteristics and essential for tactical operations.   

5.6.2 Limitations of Scalar Accuracy Metrics 

On the other hand, scalar accuracy metrics have significant limitations for the representation of predicted 

accuracy, as discussed in the next two subsections.  Therefore, scalar accuracy metrics should supplement, 

not replace, the underlying error covariance matrix or its equivalent error ellipsoid. 

5.6.2.1 Inefficiency and loss of information with scalar accuracy metrics 

Use of the error ellipse by the military can allow for more precise operations than if CE were used instead.  

For example, a monoscopic target extraction using an image from a stand-off optical sensor will yield an 

elongated error ellipse in the horizontal plane, e.g. 10:1 ratio of semi-major to semi-minor axis, due to the 

low elevation angle of the line-of-sight (LOS) and/or external elevation uncertainty.  Figure 5.6.2.1-1 

presents an example of the elongated 90% error ellipse and corresponding CE.   

 
Figure 5.6.2.1-1: Error Ellipse and Corresponding CE circle 
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The CE equals 16.5 meters, with a corresponding area within the circle of 853 meters-squared.  The area 

within the ellipse is 145 meters-squared.  The ellipse and the circle contain the same 90% probability that 

the target’s true horizontal location resides within, but the ellipse requires much less area than does the 

circle.  Operational concentration on the area within the ellipse instead of the area within the circle may 

allow for smaller “search” area, limited collateral damage, etc.   

Further technical details regarding the above example are as follows: The LOS and semi-major axis are on 

the same vertical plane. The underlying error covariance matrix had a standard deviation in both 

horizontal directions of sqrt(50.5), and a correlation coefficient of 0.98 between them. 

The following is another example of inefficiency or loss of information, this time corresponding to SE or 

90% Spherical Error.  Figure 5.6.2.1-2 presents the sphere with radius SE versus the 3-D ellipsoid 

corresponding to the same error covariance matrix CX presented in Section 5.6. 

 

Figure 5.6.2.1-2: Error Ellipsoid versus corresponding SE spheroid 

Note that the sphere requires over 7 times the volume (m3) as does the ellipsoid to encompass the same 

probability.  This is the price one pays for the simplicity and convenience of using one number to represent 

the six unique numbers contained in the error covariance or error ellipsoid.  All sense of direction-

dependent uncertainty is lost with SE and the other scalar accuracy metrics.  This example also serves to 

illustrate one final point.  In general, the error ellipsoid is the most “efficient” shape there is to represent 

a given amount of uncertainty – for dimension n = 3 it requires the least volume to enclose a desired level 

of probability as compared to all other shapes.  More specifically, for dimension n = 2 it requires the least 

area as compared to rectangles, circles, or any other closed curve. 
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In summary, the error ellipsoid is preferred over scalar accuracy metrics for the graphical display of the 

error covariance matrix and the information contained within regarding the expected magnitude and 

interrelationships of error components.   

5.6.2.2 Inferior fusion with scalar accuracy metrics 

Fusion is a process that combines or relates different sources of information.  A generic example is the 

best estimate of a 2d location given two independent estimates of that location along with their 

corresponding 2x2 error covariance matrices, or equivalently, their corresponding error ellipses.  Figure 

5.6.2.2-1 illustrates this process, where the blue dots correspond to the individual estimates, the red 

triangle to the best estimate of the location using both estimates weighted by their corresponding error 

covariance matrices, the green diamond is the true location, and the red ellipse is the solution’s error 

ellipse. 

If the two independent estimates came with CE instead of the actual error covariance, their corresponding 

error covariance matrices are equivalent to the blue circles in Figure 5.6.2.2-2, and the “best estimate” 

would be the red triangle with corresponding and significantly larger error relative to truth than in Figure 

5.6.2.2-1.  Note that the use of CE corresponds to the loss of intra-state vector correlation. 

 

Figure 5.6.2.2-1: Optimal fusion based on error 
covariance 

 

Figure 5.6.2.2-2: Inferior fusion based on CE 

As illustrated above, appropriate fusion cannot take place without corresponding error covariance 

matrices.  (See reference [2] for further details regarding the above example.) 

5.7 Representation/Dissemination of Error Covariance Matrices 
A full multi-state vector error covariance matrix or its equivalent can be represented/disseminated in 

three general ways: Direct, “A matrix”, and “Spdcf”, as summarized below and detailed in TGD 2a 

(Predictive Statistics). 

As defined earlier (Section 5.5.), the multi-state vector error covariance matrix is represented as follows: 
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𝐶𝑋 = 𝐸{휀𝑋휀𝑋𝑇} = 𝐸 {[

휀𝑋1휀𝑋1
𝑇 휀𝑋1휀𝑋2

𝑇

휀𝑋2휀𝑋1
𝑇 휀𝑋2휀𝑋2

𝑇
. . 휀𝑋1휀𝑋𝑚

𝑇

. . . .
. . . .

휀𝑋𝑚휀𝑋1
𝑇 휀𝑋𝑚휀𝑋2

𝑇
. . . .
. . 휀𝑋𝑚휀𝑋𝑚

𝑇

]} = [

𝐶𝑋1 𝐶𝑋12

. 𝐶𝑋2

. . 𝐶𝑋1𝑚

. . 𝐶𝑋2𝑚
. .
. .

. . . .
. 𝐶𝑋𝑚

]. 

Let us assume that it is to be disseminated and a subset subsequently assembled “down-stream” 

corresponding to three state vector errors 𝜖𝑋1, 𝜖𝑋3, and  𝜖𝑋5, as a specific example.  This example not 

only serves for convenience of description, but is typical operationally.  For example, if 𝐶𝑋 corresponds to 

the solution for adjusted image support data in an image bundle adjustment of 𝑚 = 200 images over a 

large area of interest, there are typically multiple downstream applications that use different subsets of 

these adjusted (registered) images in order to accurately extract ground points over their smaller area of 

interest.  However, the bundle adjustment (Value-Added Processing module) must output the entire 𝐶𝑋 

in order to serve all of the applications. 

Direct method 

Disseminate: 𝐶𝑋1, 𝐶𝑋12, 𝐶𝑋13, .. , 𝐶𝑋1𝑚, 𝐶𝑋2, 𝐶𝑋23, 𝐶𝑋24, .. , 𝐶𝑋2𝑚, .. ,𝐶𝑋𝑚.    

Assembly example for three state vector errors  𝑖 = 1,3,5: 𝐶𝑋 = [

𝐶𝑋1 𝐶𝑋13 𝐶𝑋15

. 𝐶𝑋3 𝐶𝑋35

. . 𝐶𝑋5

].    

 “A matrix” method 

Disseminate: 𝐶𝑋1, 𝐴1
2, 𝐶𝑋2, 𝐴2

3, .. , 𝐶𝑋𝑚 1, 𝐴𝑚 1
𝑚  , 𝐶𝑋𝑚, 𝐴𝑚

𝑚+1.       

Assembly example for 𝐶𝑋 = [

𝐶𝑋1 𝐶𝑋1(𝐴2
3𝐴1

2)𝑇 𝐶𝑋1(𝐴4
5𝐴3

4𝐴2
3𝐴1

2)
𝑇

. 𝐶𝑋3 𝐶𝑋3(𝐴4
5𝐴3

4)
𝑇

. . 𝐶𝑋5

].     

The “A matrix” method is compatible with a Kalman Filter (or smoother, with some modifications) that 

sequentially outputs 𝐴𝑖
𝑖+1 in addition to the usual 𝐶𝑋𝑖.  A standard Kalman Filter (no “A matrix” capability), 

cannot generate the cross-covariance matrix 𝐶𝑋𝑖𝑗.  This capability is documented in TGD 2a (Predictive 

Statistics). 

Spdcf method 

Disseminate: 𝐶𝑋1, 𝐶𝑋2, .. , 𝐶𝑋𝑚; and a few parameters defining the scalar-valued, strictly positive definite 

correlation function (spdcf), designated 𝜌(𝛿𝑡), where 𝛿𝑡 can correspond to delta time or delta space, and 

can be a scalar or multi-dimensional.   (𝛿𝑡𝑖𝑘  is the delta time or delta distance between events 𝑖 and 𝑘). 

Assembly example for state vector errors 𝑖 = 1,3,5:   
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𝐶𝑋 =

[
 
 
 𝐶𝑋1 𝜌(𝛿𝑡13) ∙ (𝐶𝑋1

1/2
) (𝐶𝑋3

1/2
) 𝜌(𝛿𝑡15) ∙ (𝐶𝑋1

1/2
) (𝐶𝑋5

1/2
)

. 𝐶𝑋3 𝜌(𝛿𝑡35) ∙ (𝐶𝑋3
1/2

) (𝐶𝑋5
1/2

)

. . 𝐶𝑋5 ]
 
 
 

, where the superscript 1/2 indicates 

principal matrix square root, a symmetric matrix.  (Note that if 𝐶𝑋𝑖 = 𝐶𝑋𝑘,  (𝐶𝑋𝑖
1/2

) (𝐶𝑋𝑘
1/2

) = 𝐶𝑋𝑖.)    

The use of an spdcf in the above equation insures a valid error covariance matrix 𝐶𝑋.  A specific spdcf is 

selected based on desired correlation characteristics.  There are numerous spdcf families, some of which 

are illustrated in Figure 5.7-1, and further detailed in TGD 2a (Predictive Statistics).  For a RF, they can also 

be assembled as isotropic (spatial direction independent) or anisotropic (spatial direction dependent), 

such as the product of two damped exponential spdcf, as illustrated in Figure 5.7-2.   

 

Figure 5.7-1: Families of spdcf 

 

Figure 5.7-2: Isotropic and anisotropic spdcf for a 2D RF (from reference [9]) 

The term “strictly positive definite correlation function” or “spdcf” refers to the fact that the use of such 

a function in the representation in the above assembly example insures a resultant positive definite error 
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covariance matrix. On the other hand, use of a “positive definite correlation function” or “pdcf”, only 

insures a resultant positive semi-definite error covariance matrix.  Also, an spdcf’s functional-value itself 

is not necessarily strictly positive as demonstrated in Figure 5.7-1. 

If the multi-state vector error covariance matrix corresponds to a stationary SP (or homogeneous RF), the 

above representation is exact (assuming based on an a priori error model).  If non-stationary, it is typically 

an approximation, although the assembled error covariance matrix is guaranteed valid (positive definite). 

The spdcf method compresses the corresponding multi-state vector error covariance matrix – only the 

diagonal blocks and the few parameters describing the spdcf need be disseminated/retained.  See TGD 2a 

and [4] for a more complete description of the spdcf method. 

Summary 

The direct method for dissemination typically corresponds to the full error covariance matrix of an 

estimate (adjustment) of a multi-state vector, such as generated by a batch Weighted Least Squares (WLS) 

estimator.  The multi-state vector is typically categorized as a RV.  The “A matrix” method is similar, but 

corresponds to an appropriately modified Kalman Filter (or smoother).  The spdcf method typically 

corresponds to the full error covariance matrix of an a priori (unadjusted) multi-state vector, typically 

categorized as an SP (or RF), or as an appropriate approximation of the full error covariance matrix 

corresponding to a RV.   Also, the spdcf method necessarily assumes that the dimension of the individual 

𝜖𝑋𝑖 are the same. 

The direct method has no bandwidth reduction, the “A matrix” method some bandwidth reduction, and 

the spdcf method has maximum bandwidth reduction.  Maximum bandwidth reduction corresponds to 

the least amount of data necessary to faithfully assemble the corresponding full error covariance matrix.  

All three methods are discussed in more detail in TGD 2a (Predictive Statistics). 

5.8 Rigorous Error Propagation  
The term “rigorous error propagation” is used to represent the proper statistical modeling of all significant 

errors and their interrelationships throughout an NSG system.  It enables optimal solutions as well as 

reliable predicted accuracies associated with specific estimates and products across the system modules.   

At the top-level, the statistical error model associated with a state S of a module (Collection, Value-Added 

Processing, Exploitation) is a necessary condition for rigorous error propagation.  At a more detailed level, 

corresponding estimators must perform rigorous error propagation as outlined in the next subsection. 

5.8.1 Error Propagation in Estimators 

Estimators, such as batch WLS, sequential Kalman filters, smoothers, particle filters, etc. are used 

throughout the NSG and have a central role regarding accuracy throughout the NSG.  They are embedded 

throughout all three main modules: Collection, Value-Added Processing, and Exploitation.  They are 

discussed in more detail in TGD 2d (Estimators and their Quality Control). 
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In order to be both reliable and (near) optimal, they must perform rigorous error propagation, in the sense 

that all appropriate error covariance matrices are input, propagated appropriately (typically via partial 

derivatives), and output along with the explicit solution state vector 𝑋.  The following is a representative 

and somewhat detailed example of a WLS estimator: 

5.8.1.1 Multi-Image Geopositioning (MIG): a Representative Example 

The Multi-Image Geopositioning solution 𝑋 corresponds to one or more 3d geolocations (“targets”) 

measured in one or more images.  If only one image is used, an external elevation source must be used as 

well.  The solution 𝑋 includes a corresponding (a posteriori) error covariance matrix 𝐶𝑋.  In general, the 

following factors increase (improve) the solution’s predicted accuracy, i.e., reduces its error covariance 

matrix, typically rendered graphically as a 90% confidence ellipsoid (see Figure 5.8.1.1-1): 

 Increased number of image measurements (image rays) 

 Diverse imaging geometry between the collective image rays 

 Increased image support data predicted accuracy (smaller support data error covariance matrix) 

o Image support data affects the image-to-ground relationship (image ray location) 

o Image support data errors are typically the dominant source of image measurement error 

 

 

Figure 5.8.1.1-1: MIG Solution for one geolocation and its corresponding 90% Confidence Ellipsoid using 

either two or three images; the two-image solution (blue dot) is based on use of the two blue rays, the 

three-image solution (purple dot) is based on use of the same two blue rays and the one purple ray 

In addition, the MIG solution weights the various image measurements, giving more weight to those with 

predicted smaller (total) measurement errors.  The MIG solution 𝑋 and its error covariance matrix 𝐶𝑋 are 
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usually computed with respect to the ECF Cartesian coordinate system, followed by the conversion of the 

error covariance matrix to an ENU Cartesian coordinate system (see Section 5.6.1 of TGD 2a for more 

details).  A conversion of the solution 𝑋 from ECF to geodetic coordinates is also an option. 

A particular Multi-Image Geopositioning (MIG) solution 𝑋 is presented below, along with Table 5.8.1.1-1 

containing corresponding solution variable and parameter definitions, including the computed a posteriori 

solution error covariance matrix 𝐶𝑋.  This particular MIG solution is for the 3d location of two different 

features or ground points, based on one (line, sample) image measurement for each of these points in 

each of m images. 

The 6x1 state vector 𝑋 contains the two 3d target locations.  The a priori estimate of the targets is 

contained in 𝑋0 with corresponding a priori error covariance matrix 𝐶𝑋0.  This estimate is usually given 

very little weight (𝐶𝑋0 very large) unless vertical information is available from an external source (e.g., 

DEM) in which case 𝑋0 and 𝐶𝑋0 components are set appropriately. 

The partial derivatives 𝐵𝑋 and 𝐵𝑆, and the predicted image measurements 𝑀0 are computed at the 

reference point 𝑋0 using the values of the (typically) previously adjusted sensor metadata.   The latter has 

error covariance matrix 𝐶𝑆 with respect to sensor adjustable parameters.  Note that the difference 

between the actual measurements  𝑀 and the predicted measurements 𝑀0, i.e., the a priori measurement 

residual (𝑀  𝑀0), drives the estimate of the correction  𝑋 to the a priori (reference) estimate 𝑋0 per 

the equations below. 

The mensuration error and sensor-mensuration error (see Section 5.8.1.3) are statistically represented by 

error covariance matrices C𝑀 and C𝑆𝑀, respectively.  The (total) measurement error includes mensuration 

error, sensor-mensuration error, and the effects of sensor adjustable parameter errors, as statistically 

represented by the total measurement error covariance matrix 𝐶𝑚𝑒𝑎𝑠, whose inverse is used to weight 

the image measurements.  Note that the full sensor adjustable parameter error covariance matrix 𝐶𝑆 is 

used, including the cross-covariance between sensor adjustable parameter errors between images.  

Furthermore, it is projected (propagated) to image space via the corresponding partial derivatives 𝐵𝑆 prior 

to its addition to the total measurement error covariance matrix 𝐶𝑚𝑒𝑎𝑠.  

The use of the full sensor adjustable parameter error covariance matrix 𝐶𝑆 is essential for an optimal 

solution with reliable predicted accuracy (error covariance matrix).  See TGD 2d (Estimators and their 

Quality Control) for more details regarding the content and structure of the error covariance matrices C𝑀, 

C𝑆𝑀, and 𝐶𝑆. 

The MIG solution equations are as follows: 

 𝑋 = (𝐶𝑋0
 1 + 𝐵𝑋

𝑇𝑊𝐵𝑋) 1𝐵𝑋
𝑇𝑊(𝑀  𝑀0) 

𝑋 = 𝑋0 +   

The corresponding table of solution variable and parameter definitions is as follows: 
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Table 5.8.1.1-1: WLS MIG solution variables; m = number of images, 
n = number of sensor adjustable parameters per image 

Variable Variable Definition  

𝑋 Ground location solution (3D coordinate) for two points                                 (6x1) 

𝑋0 A priori estimate of the ground locations (𝑋)                                                      (6x1) 

𝐶𝑋0 Error covariance matrix of a priori estimate                                                        (6x6) 

𝑀 Image point measurement (msmnts) vector                                                     (4mx1) 

𝑀0 Image point predicted measurement vector                                                    (4mx1) 

𝐶𝑚𝑒𝑎𝑠 = (𝐵𝑆𝐶𝑆𝐵𝑆
𝑇 + C𝑀 + C𝑆𝑀)  Total measurement error covariance matrix                                                 (4mx4m) 

𝑊 = (𝐶𝑚𝑒𝑎𝑠)
 1 Total measurement weight matrix                                                                  (4mx4m) 

𝐵𝑋 Partial derivatives of msmnts w.r.t the ground location                                 (4mx6) 

𝐵𝑆  
Partial derivatives of msmnts w.r.t. sensor adjustable 

parameters          

(4mxnm)  

𝐶𝑆 Sensor adjustable parameter error covariance matrix                                (nmxnm) 

C𝑀 Mensuration error covariance matrix                                                             (4mx4m) 

C𝑆𝑀 Sensor-mensuration error covariance matrix                                               (4mx4m) 

𝐶𝑋 ≡ (𝐶𝑋0
 1 + 𝐵𝑋

𝑇𝑊𝐵𝑋) 1 Solution error covariance matrix                                                                            (6x6) 

 

Note that the measurement vector 𝑀 has 4𝑚 components corresponding to a (line,sample) image 

measurement for each of two targets in each of 𝑚 images.  Also, the solution’s predicted accuracy, or 

solution error covariance matrix 𝐶𝑋,  improves with each additional image.  Further note that the above 

solution equations do not include iteration for convenience and ease of notation; however, it typically is 

included for linearization about the (updated) operating point, along with measurement editing and the 

evaluation of internal performance metrics, such as a posteriori image residuals, for Quality Control (QC) 

of the MIG solution. 

See TGD 2d for more details regarding a WLS solution in general, and in particular, the MIG solution 

equations, including solution iteration for linearization, a single ground point for solution, and QC. 

5.8.1.2 The effect of multiple targets on the solution 

For ease of illustration, the above MIG solution was for two ground points or “targets”.  As such, the 

solution 6x6 error covariance matrix automatically contains the individual error covariance matrix for each 

point and the error cross-covariance matrix between the point pair required to compute both absolute 

and relative predicted accuracy (see Section 5.5.2).  What if the solution contained only one point, or what 

if the solution contained many more than two points – what are the effects on accuracy and how is 

predicted relative accuracy computed?  

In general, as the number of ground points in the solution increases, the predicted accuracy for each point 

gets somewhat better.  When only one point is in the solution, and predicted relative accuracy is required 

between it and another point in a different solution which uses the same sensor support data, an 

appropriate formula is required.  This formula is detailed, as well as the other important targeting topics 

discussed above, in TGD 2d (Estimators and their QC). 



NGA.SIG.0026.01_1.1_ACCOVER 

 
63 

 

5.8.1.3 Sensor-mensuration errors 

As typical for an estimator, there were multiple sources of error addressed in the above MIG algorithm 

which affect the solution: errors in the a priori estimate of the state vector for solution, errors in the 

sensor metadata affecting the predicted measurements, mensuration errors in the explicit measurement 

process itself, and errors which are termed “sensor-mensuration errors” (which have been referred to in 

the past as “unmodeled errors”).  The latter source of error is a somewhat recent concept, but vital to 

reliable solution predicted accuracy, in particular, for reliable predicted relative accuracy when more than 

one ground point location is solved for simultaneously, as is frequently the case for a “mensuration 

application” (e.g., extraction of a linear feature such as a runway).   

For multiple ground points solved for together in MIG, and particularly for monoscopic MIG (one image 

with elevation source), the effects of sensor metadata errors are very similar for points close together; 

hence, tend to cancel out with negligible effect on relative accuracy between ground point pairs.  

Mensuration errors are uncorrelated and do not cancel out, but have the same statistical effect 

independent of how close together the points are.  Sensor-mensuration errors, on the other hand, have 

a statistical effect that typically grows with distance between points – a typical observed effect in 

experimentation/testing of commercial satellite imagery. 

Sensor-mensuration errors correspond to the effects of sensor errors that are too “high-frequency” to be 

represented as errors in explicit sensor metadata adjustable parameters, such as 3d position correction 

for image i, i=1,..,m.  Therefore, their effects on image measurements are statistically represented directly 

in image (measurement) space.  A separate (line,sample) error corresponds to each image measurement 

for all images involved.  These errors are uncorrelated across images, but correlated within an image.  

They are modeled as corresponding to a 2D RF (2d) for each image. 

The corresponding 2x2 error covariance matrix and the degree of spatial correlation for an image are 

specifiable, represented as a 2D RF (2d) where 2D “space” is (line, sample) image-space directions and 

(2d) components are line error and sample error.  A typical strictly positive definite correlation function 

(spdcf) used to represent the “spatial” correlation is presented in Figure 5.8.1.3-1.  Note that different 

spatial correlation can be assigned to different directions in the image (anisotropic).  Also, the maximum 

correlation (coefficient) is less than 1.0 at negligible distance and decreases with increasing distance 

between a point pair.  Thus, the effect of sensor-mensuration error on relative accuracy is always non-

zero, increases with distance, and then levels-off as correlation approaches zero to a maximum value 

dictated by the corresponding error covariance matrix for the 2D RF (2d).  This is illustrated as follows for 

the line-component of sensor-mensuration error only for simplicity: 

Variance of relative line error:  𝑒𝑙𝜎𝑙𝑖𝑛𝑒 𝜖
2 =  2𝜎𝑙𝑖𝑛𝑒 𝜖

2 (1  𝜌𝑙𝑖𝑛𝑒 𝜖( 𝑙𝑖𝑛𝑒,  𝑠 𝑚𝑝𝑙𝑒)), where 𝜎𝑙𝑖𝑛𝑒 𝜖
2  is the 

first diagonal element of the 2x2 error covariance, and 𝜌𝑙𝑖𝑛𝑒 𝜖( 𝑙𝑖𝑛𝑒,  𝑠 𝑚𝑝𝑙𝑒)) is the spatial correlation 

function for line error, where   𝑙𝑖𝑛𝑒 and  𝑠 𝑚𝑝𝑙𝑒  are the line and sample distances between the two 

points of interest.  Both the error covariance matrix and the spatial correlation function are predictive 

statistics corresponding to the 2D RF (2d) for sensor-mensuration error. 
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Figure 5.8.1.3-1: Sensor-mensuration error: spatial correlation 
of the corresponding 2D RF (2d) error model 

Sensor-mensuration error is further detailed in [8] and the corresponding error modeling in TGD 2d.  

Further note that sensor-mensuration error is known as “unmodeled error” in [8] and other previous 

documentation, a misnomer that we are trying to correct. It is a misnomer because, although not modeled 

functionally such that it is adjustable or correctable, it is modeled statistically. 

5.9 Estimators: General Characteristics 
Section 5.8.1 presented a specific example of an estimator and corresponding rigorous error propagation.  

TGD 2d (Estimators and their QC) presents details of appropriate estimators in general and their 

corresponding characteristics, with a summary presented in Figure 5.9-1.  The Quality Assurance of an 

estimator, as well as the Quality Control of its specific solution or output, are a primary focus of TGD 2d.  

In addition, reference [6] presents an “easy-to-read” summary of TGD 2d. 
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Figure 5.9-1:  Estimator and Major Characteristics for Optimality, Quality Assurance and corresponding 
Quality Control; primarily for a batch estimator – some characteristics/internal performance metrics for 

a sequential estimator not illustrated 

Accuracy and predicted accuracy performance requirements for a system or its major modules (Section 

5.1) flow down (are sub-allocated) to corresponding estimators within the modules.  This, in turn, levies 

requirements on the information used by the estimators: the predicted accuracy, number, and 

distribution of measurements, as well as requirements on the predicted accuracy of a priori data, such as 

sensor metadata.  These “flow-downs” also correspond to the appropriate range of operating conditions; 

for example, the expected range of imaging geometries when measurements correspond to images.  
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All of the estimator’s information regarding the predicted accuracy of its inputs is assumed to be 

represented using members from the “tool box” of statistical error models discussed earlier in this 

document.  Previously, their general form and content were described, but when actually used by the 

estimator, they must, of course, be numerically populated.  For example, via an explicit corresponding 

multi-state vector error covariance matrix, or perhaps an error process identified as a stochastic process, 

with explicit corresponding state vector error covariance matrix and spdcf.  In addition, members from 

this same toolbox are used to represent the predicted accuracy of the estimator’s solution or output, 

typically simply an error covariance matrix with an assumed mean-value of error and from which 

probabilities of error (e.g., CE90 and LE90) can also be generated if so desired. 

As detailed in TGD 2d, two major classes of estimators are batch estimators, such as Weighted Least 

Squares (WLS) estimators, and sequential estimators, such as Kalman filters.  In addition, the Quality 

Assurance (QA) and Quality Control (QC) of their solutions, including predicted accuracies, is critical in the 

NSG, and detailed accordingly in TGD 2d.   

QA corresponds to the specification of applicable requirements for the implementation of an estimator, 

and QC corresponds to the estimator’s performance of those requirements for a given solution.    QA/QC 

is based primarily on the internal metrics listed in Figure  5.9-1, but may also include occasional 

comparison of the solutions to ground truth, also discussed in TGD 2d.  Much of the QA/QC for batch 

estimators is based on a posteriori (post-solution) measurement residuals, while that for sequential 

estimators is based on a priori (pre-solution) measurements residuals for each update cycle (time step) of 

the sequential estimator. 

In particular, the estimator’s reference variance in Figure 5.9-1 is applicable to a batch WLS estimator and 

is a scalar combination of the a posteriori measurement residuals normalized by their a priori (combined) 

weight, and is used as an internal performance metric for QC.  If too large (or small) it indicates 

mismodeling, with a typical symptom corresponding to the solution’s a posteriori error covariance matrix 

being too small or “optimistic”.  However, in order to compensate, subsequent scaling of this error 

covariance matrix by the reference variance should only be performed in certain circumstances and as a 

“stop-gap” measure.  Instead, the estimator design and inputs (portion of the corresponding module’s 

statistical error models) should be modified appropriately, such that the value of the reference variance 

is reasonable, the estimator performs in a consistent fashion, and the output error covariance 𝐶𝑋 is 

reliable, i.e., consistent with estimator solution errors.  This is discussed in further detail in TGD 2d.  In 

addition, and of great benefit in the making of any such modifications is “calibration”, as described at the 

top-level in the following section. 

5.10 Accuracy and Statistical Error Model Periodic Calibration 
Rigorous error propagation in general, and optimal estimators in particular, require a reasonable 

statistical error model(s) for the corresponding NSG module(s).  It is unrealistic that such models are 

always available, either at system “start” or throughout operations.  Their general form may be 

reasonable, but parameter values describing their specifics may not be.  Thus, the statistical error models 

corresponding to predicted accuracy must be “calibrated” periodically. This typically requires that the 
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simpler, probabilistic-based error model corresponding to (system) accuracy be calibrated first, with 

results “flowing down” to the statistical error model(s) associated with predicted accuracy.   

An important input to the above process is the periodic assessment of accuracy and predicted accuracy, 

essentially the data and procedure of Validation discussed earlier in Section 5.1, but done for calibration 

purposes, not system validation, and done over a “calibration range”, such as multiple fields of surveyed 

ground control points.  This process also serves as an important part of general system accuracy Quality 

Control. 

5.11 Monte-Carlo Simulation of Errors for Simple and Complex Systems 
Section 5.8 of this document discussed rigorous analytic error propagation.  However, it can be difficult 

to perform rigorous error propagation analytically for a complicated system due to non-linear effects, and 

impossible if it is a “black box”.   

Monte-Carlo (sample-based) simulation can be used instead as outlined in Figure 5.11-1 and detailed in 

TGD 2e (Monte-Carlo Simulation).  With the appropriate approach, throughput is typically no longer an 

issue; although there still remain trade-offs regarding generality versus speed.  Approaches detailed in 

TGD 2e include the ability to simulate correlated input samples in a very fast manner. 

 

Figure 5.11-1:  MC Simulation Overview 

Note that sample (realizations) are generated for system inputs based on an assumed a priori (predictive) 

statistical model, and then sample statistics are generated over the corresponding system output samples 

and a (sample) statistical model derived.   

Monte-Carlo (MC) simulation can also be used to simulate less-complicated systems (modules or 

applications).  For example, they can be used to verify analytic error propagation and perform various 
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related trade-studies.  They can also be embedded into specific lower-level applications, two of which are 

outlined below. 

Viewshed  

Viewshed is a common spatial analysis technique by which to assess what is visible by an observer (or 

conversely the observer’s visibility) for a given location. 

Figure 5.11-2 presents a portion of the ocean’s bottom surface (aka ocean floor) represented as a 

horizontal grid of depth generated from bathymetric 3d survey data.  The grid contains N=300,000 points, 

and the distance between grid points is 1000 meters in each horizontal (X and Y) direction.  An observer’s 

location of interest is represented by the light blue circle 50 meters above the bottom surface. 

 

Figure 5.11-2: Horizontal grid of ocean bottom surface (color bar corresponds to depth in meters) 

The actual bottom surface is also assumed to have an additional surface z (scalar) error represented by a 

non-homogeneous 3D RF (1d).  The standard deviations for z error is 2.5% of depth.  The spatial correlation 

is either modeled as spatially uncorrelated across all three (x,y,z) directions, or spatially correlated, 

modeled as a separable (product of three) decaying exponential with distance constants of 5000, 5000, 

and 250 meters, respectively. 

Figures 5.11-3 and 5.11-4 show probabilistic viewshed outputs draped over the bottom surface of Figure 

5.11-2, for spatially uncorrelated and spatially correlated errors, respectively. The viewshed probabilistic 

outputs were generated by summing the results of 100 independent viewshed outputs. Each viewshed 

output is a binary visibility/invisibility value for each of the N grid points or cells. A specific viewshed 

output was generated by the viewshed algorithm, given the location of the observer and an independent 

representation of the bottom surface over the N cells. The representation of the bottom surface 

corresponds to the original bottom surface (reference) plus the trilinear interpolated results of an 

independent realization of the scalar random field. The scalar corresponds to vertical or depth error (z) 

over a 3D (xyz) grid that contains the original bottom surface and its grid within. 
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Figure 5.11-3: Probabilistic viewshed from uncorrelated z error (color bar  

represents probability that bottom surface is visible to observer) 

 
Figure 5.11-4: Probabilistic viewshed from spatially correlated z error  

(color bar represents probability that bottom surface is visible to observer) 

 

The viewshed output for the spatially correlated case contrasts dramatically with the uncorrelated case 
by showing significantly higher probabilistic visibilities. 
 

See reference [9] for more details regarding the above viewshed example. 
 
Non-linear MIG 

Monte-Carlo simulation can also be embedded, possibly as an option, in straight-forward exploitation 

applications when appropriate.  For example, consider the case of monoscopic MIG which corresponds to 
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image-to-ground at a specified elevation, i.e., the intersection of the line-of-sight or image ray with a DEM 

or DSM.  However, for this particular application, the nominal 3d ground point position or “operating” 

point for the solution is “unstable”, i.e., linearization about the solution is problematic.  This is depicted 

in Figure 5.11-5.   

 

Figure 5.11-5: MIG mono extraction based on an EO sensor: analytic versus simulation-based solution at 
unstable operating point; operationally, there are more simulated sample solutions (gold dots) than are 

depicted in the figure 

There are two MIG solutions, the nominal MIG analytic solution (green dot), and the MIG simulation-

based solution (purple dot).  The samples correspond to simulated independent realizations of sensor 

support data (line-of-sight) error, as well as independent realizations of Digital Surface Model (DSM) error, 

with corresponding MIG sample solutions (gold dots).  The MIG simulation-based solution corresponds to 

the mean-value of the MIG sample solutions.  Monte-Carlo simulation of errors (realizations) are based 

on the corresponding error models or error covariance matrices as detailed in TGD 2e (Monte-Carlo 

simulation). 

The specific extraction scenario is as follows.  A pixel in the image corresponding to a location on the 

building roof-top near a corner is identified and measured in the image.  The available image sensor 

support data is incorrect, as expected, and as represented by its nominal LOS (blue dashed line) 

corresponding to the pixel location and its corresponding error ellipsoid (blue ellipsoid or cone) centered 

about the LOS due primarily to sensor metadata errors or predicted accuracy.   

The MIG analytic solution (green dot) corresponds to the nominal and incorrect LOS intersected with the 

DSM, and the surrounding green ellipsoid represents the solution’s predicted accuracy.  The analytic 

 



NGA.SIG.0026.01_1.1_ACCOVER 

 
71 

 

solution intersects the ground, not the roof top.  The true location (red point) corresponds to the correct 

LOS (red dashed line) and the roof top’s true DSM value.  The MIG simulation-based solution is the purple 

dot with surrounding 90% sample error ellipsoid.  The disparity between the MIG analytic solution and 

the MIG simulation-based solution indicates a problem.  Once identified, the problem can be mitigated.  

For example, the MIG solution is constrained to use an approximate elevation/height corresponding to 

the building rooftop. 

5.12 External Data and Quality Assessment 
The NSG is becoming increasingly more reliant on external data: ranging from “semi-external” outsourcing 

of tasks, to external commodity and crowd-sourcing data.  For the latter two, assessing accuracy and 

quality (reliability) is and will continue to be challenging, as detailed metadata and pedigree may be nil.  

Outsourced data is usually generated against an NSG-supplied specification of performance requirements.  

The challenge is to continuously ensure, as best as possible, that the product requirements are being met 

without formal and expensive (re)testing.  Figure 5.12-1 is a graphical depiction of the overall process of 

accuracy and quality assessment of external data in the NSG. 

 
Figure 5.12-1: Functional flow of external data into the NSG 

This general subject is covered in TGD 2f (External Data and its Quality Assessment) and briefly discussed 

here:   

For outsourcing, some Quality Assurance (QA), as opposed to simply quality assessment, of the 

outsourced product is typically built-in to the requirements for the particular outsourcing contract.  

However, the “tasking” module within the NSG would like more confidence regarding the Quality 

Assurance (QA) and corresponding Quality Control (QC) for each specific product delivered without the 
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expense and delay of detailed testing on a per product-delivery basis.  One approach is to include in the 

requirements that the data for internal QC checks be delivered by the contractor along with the nominal 

product, so as to ensure that these checks were indeed performed by the contractor (or at least the 

required internal metrics were generated).  In addition, the NSG tasking module can review these results 

with appropriate feedback to the contractor, if necessary.   

Of course, the specific QA/QC internal metrics vary with the type of outsourced product.  As an example, 

for outsourced image registration task involving a large number of overlapping images (aka “triangulation” 

or “bundle adjustment”), internal metrics could include detailed shear statistics (not just a one or two 

number summary per model), detailed y-parallax statistics, number and distribution of tie points used, 

and various (WLS batch) estimator internal performance metrics, such as the measurement residual Chi-

Square value, values of the various parameter corrections normalized by their a priori error covariance, 

internal measurement editing results, etc.  These types of metrics can ensure that the solution was at 

least internally consistent. 

The estimation of accuracy and the quality assessment of externally generated data, such as commodities 

and crowd-sourcing data, is much more difficult, as the NSG has virtually no control of the data generation 

and its internal QA (if done at all) process.  In addition, the range of data is virtually unlimited: (1) small-

sat imagery with little metadata, (2) various feature data bases, and (3) collections of independent 

photographs over an object of interest, for example.  Various candidate NSG approaches include: 

 Generation and update of NSG-internal accuracy and quality assessment (reliability) models of 

external data 

o A function of the number of “people” generating the crowd-sourcing data of interest, the 

time-interval, and the base-layer 

 Combining or comparison of multiple collectors 

o Example: openStreetMap, Wikimapia, Google Maps, etc. 

 Generation of sample statistics based on independent ground truth when possible 

o Conjugate points must be found 

o Sample results can then feed NSG-internal predicted accuracy (error) models 

 Maintenance of an over-all NSG data-base compiling feedback from various NSG modules 

regarding the usefulness of specific external data, and making corresponding assessments of 

predicted accuracy and quality assessment for its future use 

The general task of accuracy prediction and quality assessment of external data used by the NSG is a 

current and future (on-going) research area. 

5.13 Provenance for Predicted Accuracy 
As a subset of the provenance of NSG internal data and its products, geolocations and their predicted 

accuracies require, as a minimum, corresponding “time tags” to specify the time associated with their 

generation and the time-of-applicability of the data used to generate them.  Thus, for example, if a set of 

imagery was used to generate feature geolocations and their predicted accuracies, the appropriate 

imaging time(s) should also be specified.  Thus, if the features are then utilized two years later, it is known 
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that their accompanying geolocations and their predicted accuracies are applicable two years (or more) 

earlier.  Correspondingly, predicted accuracies can be “degraded” (e.g. accompanying error covariances 

inflated) or flagged as “do not use”, if necessary, in order to account for any subsequent earth-quakes, 

landslides, urban development, etc., known to have occurred.  Also, smaller effects can also be accounted 

for, such as changes to the WGS-84 reference, polar wander, etc.  Corresponding NSG processing can 

include corrections to affected geolocations as well as small degradations of their predicted accuracy due 

to imperfect corrections, if applicable.   

A general area of research is how to determine if earlier predicted accuracies need to be brought “up to-

date”, and if so, how.  The latter process includes implementation of appropriate deterministic and 

statistical-based equations that also need to be developed, as well as the operational procedures to 

implement these equations consistently throughout the NSG. 

5.14 Computer System Capabilities 
Due to tremendous advances in computer systems over the last few decades, approaches related to error 

modeling have expanded significantly:  complex systems can be effectively simulated via Monte-Carlo 

methods; very large multi-state vector error covariance matrices can be generated, stored, and 

disseminated; estimation algorithms can correspond to non-linear estimation; and analytic 

approximations can be replaced by straight-forward numerical integration.  This document and the TGD 

2 documents, in part, reflect these expanded capabilities in the methods and algorithms that they present.   

5.15 Recommended Practices Overview 
The companion TGD 2 documents include recommended standard practices or methodologies regarding 

Accuracy and corresponding Error Modeling, applicable throughout all relevant modules in the NSG (see 

Figure 4.1-1).  In this introductory guidance document, TGD 1, we also gave an overview of many of these 

practices, which are summarized and categorized at three different levels for an NSG Geolocation System 

in Tables 5.15-1 through 5.15-3: 

 

 

 

 

 

 

 

 

 



NGA.SIG.0026.01_1.1_ACCOVER 

 
74 

 

Table 5.15-1:  Recommended practices for an NSG Geolocation System at the system level 

 

 

 

 

 

Recommended Practices

Level: High (system level)

Statistical Error Models are implemented:

Specification and Validation of Predicted Accuracy is included:

Specification and validation of a Geolocation System's Accuracy requirements are 

accompanied by the specification and validation of its Predicterd  Accuracy requirements as 

well.

Validation of Requirements is based on an adequate number of Independent Samples:

Validation is based on sample statistics with enough independent samples for a specified 

level of statistical significance.  This is particularly important for errors that are appropriately 

represented as, or include the effects of, stochastic processes or random fields.  Samples 

must be taken (pooled) over multiple time or spatial intervals that are widely separated 

relative to temporal or spatial correlations.

Externally generated data requires the assessment of its Accuracy:

The above entries are directed at NSG-internal modules and data.  Externally generated 

data, such as crowd-sourcing and commodities data, require different, lower fidelity, but 

never the less as important processing.  This processing is essentially limited to the 

asessment of it accuracy and its quality assessment, not the formal validation of accuracy 

Provenance for predicted accuracies is included:

Provenance for predicted accuracies are to be generated, maintained, and utilized.

Standard Application Program Interfaces are recommended:

Standard Application Program Interfaces are recommended for all modules.

 Statistical error models are defined and utilized within each main module (Collection, Value-

Added Processing, Exploitation) and transferred among main modules in a Geolocation 

System as appropriate.  An appropriate statistical error model is a necessary condition for 

optimal system accuracy and reliable predicted accuracy under various conditions.
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Table 5.15-2:  Recommended practices for an NSG Geolocation System at the module level 

 

 

 

 

 

 

 

Recommended Practices

Level: Medium (system module level)

Full Error Covariance Matrix utilized:

The full error covariance matrix is utlized within and made availabe between modules.

Error Covariance Matrix is not replaced by summary statistics:

The (full) error covariance matrix is not replaced by summary metrics, such as predictive 

scalar accuracy metrics CE and LE.   These scalar accuracy metrics do serve a useful purpose, 

but supplement, not replace, the error covariance matrix. 

Estimators make appropriate use of statistical error models

Estimators (Weighted Least Squares, Kalman filters, etc.) make appropriate use of statistiscal 

errors models in order to perform rigorous error propagation and weight its various 

measurements appropriately.  They also generate a reliable predicted accuracy for an 

arbitrary but  specific solution.

Estimators perform QC on their solutions:

Estimators perform Quality Control (QC )on their solution based on Quality Assurance (QA) 

requirements for the estimator.

Periodic Calibration is performed:

Periodic calibration of accuracy, predicted accuracy, and statistical error models is 

performed, typically using ground truth or surveyed geolocations.

Monte Carlo Simulation is utilized as appropriate:

Rigorous error propagation and the analysis of the effects of errors in complex geolocation 

systems can be effectively performed using Monte Carlo simulation of errors.  

Corresponding Monte Carlo simulation of errors can also be embedded in the generation of 

various geolocation products when appropriate.
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Table 5.15-3:  Recommended practices for an NSG Geolocation System at the intra-module level 

 

 

Document Summary 

This document presented an integrated overview of recommended methodologies, procedures, and 

algorithms, such that geospatial accuracy is close to optimal for arbitrary geolocations generated or 

extracted by an NSG Geolocation System, specific geolocations are accompanied by reliable predicted 

accuracy, and such that capabilities can be specified, validated, verified, and assessed.  TGD 2a – 2f provide 

corresponding and additional details.   

6 Notes 

6.1 Intended Use 
This information and guidance document provides technical guidance to inform the development of 

geospatial data accuracy characterization for NSG GEOINT collectors, producers and consumers -- 

accuracy characterization as required to describe the trustworthiness of geolocations for defense and 

intelligence use and to support practices that acquire, generate, process, exploit, and provide geolocation 

data and information based on geolocation data.  This document is part of a series of complementary 

documents.  TGD 1 provides an overview to more detailed topical technical guidance provided in TGD 2a 

– TGD 2f on the subjects of predictive statistics, sample statistics, specification and validation, estimators 

and quality control, Monte-Carlo simulation, and external data and quality assessment. 

7 References 
 

Recommended Practices

Level: Low (intra module level)

Error Ellipsoids are uitilized:

Error ellipsoids as well as confidence ellipsoids at speciified levels of probability and based 

on the error covariance matrix are utilized and made available to the human operator or 

analyst whenever feasible and appropriate.  

Scalar accuracy and predicted accuracy summaries based on LE, CE, and SE are utilized:

Scalar accuracy and predicted accuracy summaries based on LE, CE, and SE at specified levels 

of probability are utilized as appropriate as convenient summaries of accuracy and predicted 

accuracy.  They are computed using the algorithms presented in TGD 2a as a predictive 

statistic and in TGD 2b as a sample statistic.
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A priori - Relating to or denoting reasoning or knowledge that proceeds from theoretical deduction rather 

than from observation or experience.  [k]  

 For typical NSG accuracy and predicted accuracy applications, a priori refers to a mathematical 

statistical model of errors and/or the corresponding state vector containing those errors prior to 

its adjustment using additional information. 

A posteriori - Relating to or denoting reasoning or knowledge that proceeds from observations or 

experiences to the deduction of probable causes. [k] 

 For typical NSG accuracy and predicted accuracy applications, a posteriori refers to a refined 

mathematical statistical model of errors and/or the corresponding state vector containing those 

errors following its adjustment using additional information. 

Absolute Horizontal Accuracy - The range of values for the error in an object’s horizontal metric 

geolocation value with respect to a specified geodetic horizontal reference datum, expressed as a radial 

error at the 90 percent probability level (CE). [b],[f],[j] 

 There are two types of absolute horizontal accuracy: predicted absolute horizontal accuracy is 

based on error propagation via a statistical error model; and measured absolute horizontal 

accuracy is an empirically derived metric based on sample statistics. 

 The term “horizontal accuracy” is assumed to correspond to “absolute horizontal accuracy”. 

 The 90% probability level (CE) is the default; 95% and 50% probability levels are optional, i.e., 

CE_95 and CE_50, respectively. 

http://www.oxforddictionaries.com/us/
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Absolute Vertical Accuracy - The range of values for the error in an object’s metric elevation value with 

respect to a vertical reference datum, expressed as a linear error at the 90 percent probability level (LE). 

[b],[f],[j] 

 There are two types of absolute vertical accuracy: predicted absolute vertical accuracy is based 

on error propagation via a statistical error model; and measured absolute vertical accuracy is an 

empirically derived metric based on sample statistics.  

 The term “vertical accuracy” is assumed to correspond to “absolute vertical accuracy”. 

 The 90% probability level (LE) is the default; 95% and 50% probability levels are optional, i.e., 

LE_95 and LE_50, respectively. 

Bias Error - A category of error; an error that does not vary from one realization (trial or experimental 

outcome) to the other.  When error is represented as a random variable, random vector, stochastic 

process, or random field, a bias error corresponds to a non-zero mean-value. [f],[ji]  

 Caution: a given realization of a mean-zero stochastic process with typical temporal correlation 

and over a reasonable finite time interval appears to have a non-zero sample mean-value; 

however, when sample statistics are taken over enough multiple (independent) realizations, the 

sample mean-value approaches zero in accordance with the true mean-value.  This characteristic 

extends to random fields as well. 

CE-LE Error Cylinder - A 3D cylinder made up of CE and LE such that there is between 81-90% probability 

that the 3d error resides within. 

Confidence Ellipsoid - An ellipsoid centered at an estimate of geolocation such that there is a 90% 

probability (or XX% if specified specifically) that the true geolocation is within the ellipsoidal boundary 

(ellipsoid interior).  A confidence ellipsoid is typically generated based on an error covariance matrix, an 

assumed mean-value of error equal to zero, and an assumed multi-variate Gaussian probability 

distribution of error in up to three spatial dimensions. 

Correlated Error - A category of errors; errors that are correlated with other errors, and typically 

represented in the NSG as a random vector, stochastic process, or random field.  A correlated error is 

independent (uncorrelated) with itself and other errors from one realization (trial or experimental 

outcome) to the next.  However, within a given realization, it is correlated with other errors of interest:  

 If a random vector, the various elements (random variables) which make it up are correlated with 

each other (intra-state vector correlation). 

 If a stochastic process, the collection of random vectors which make up the stochastic process are 

correlated with each other (inter-state vector correlation).  That is, the elements of one random 

vector are correlated with the elements of another random vector, typically the closer the two 

random vectors in time, the greater the correlation.  A similar concept is applicable to random 

fields. 
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Correlated Values - Values (of random variables) which are related by a statistical interdependence. For 

two random variables, this interdependence is represented by their covariance and typically expressed as 

a correlation coefficient – both have non-zero values.  This interdependence is relative to deviations about 

their respective mean-values.  [f]     

Covariance - A measure of the mutual variation of two random variables, where variations (deviations or 

dispersions) are about their respective mean-values. If the covariance between two random values is zero, 

they are uncorrelated. [b]  

Covariance Function - The cross-covariance matrix of two random vectors associated with a (same) 

stochastic process or random field as a function of their corresponding time or spatial locations, 

respectively.  If the stochastic process is (wide sense) stationary or the random field (wide sense) 

homogeneous, the cross-covariance matrix is a function of delta time or delta position, respectively.  

When evaluated at delta equal to zero, it equals the common covariance matrix.  

Covariance Matrix - A symmetric, 𝑛 𝑛 positive definite matrix populated with the variances and 

covariances of the random variables contained within a single, multi-component (𝑛 1) state vector or 

random vector.  Note that if row 𝑖 ( 1 ≤ 𝑖 ≤ 𝑛) and all corresponding columns 𝑗 ( 1 ≤ 𝑗 ≤ 𝑛 ,𝑗 ≠ 𝑖) are 

zero, random variable 𝑖 is uncorrelated with all of the other random variables 𝑗.  [b] 

Cross-covariance Matrix - An 𝑛 𝑚 matrix containing the covariance between each pair of elements 

(random variables) of an 𝑛 1 random vector and an 𝑚 1 random vector. 

Deterministic Error - An error that is not random or dependent on “chance” – a “known” value, such as 

the specific realization of an error of an estimated geolocation as compared to “ground truth”, i.e., their 

difference, where “ground truth” is assumed error-free. 

Earth Centered Earth Fixed Cartesian Coordinate System - The Conventional Terrestrial Reference System 

(CTRS) with the following definition:   

1) Origin: at the geocenter (center of mass of the earth). 

2) z-axis: Directed toward the conventional definition of the North Pole, or more precise, towards 

the conventional terrestrial pole as defined by the International Earth Rotation Service (IERS). 

3) x-Axis: Passes through the point of zero longitude (approximately on the Greenwich meridian) as 

defined by the IERS. 

4) y-axis: forms a right-handed coordinate system with the x- and z-axes.  [l] 

Elevation - Vertical distance above a datum, usually mean sea level, to a point or object on the Earth’s 

surface; not to be confused with altitude which refers to points or objects above the Earth’s surface.  In 

geodetic formulas, elevations are heights: h is the height above the ellipsoid; H is the height above the 

geoid or local datum.  Occasionally h and H may be reversed.  See definition of Height for further 

information. [c],[f] 
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Error (augmented definition) - The difference between the observed or estimated value and its ideal or 

true value. [f] There are a number of different categories of errors applicable to the NSG: Bias Error, 

Random Error, and Correlated Error.  In general, an error of interest may be a combination of errors from 

these categories. Their combination is typically represented as either a random variable, random vector, 

stochastic process, or random field: 

 A random variable represents a bias error plus a random error.  The former corresponds to the 

random variable’s mean-value, and if equal to zero, the random variable represents random error 

only, which is uncorrelated from one realization of the random variable to the next realization. 

 A random vector, stochastic process, and random field can represent all three categories of error.  

The random variables that make-up (are elements of) random vectors are uncorrelated from one 

realization to the next by definition.  However, within a given realization, they can also be 

correlated with each other:   

o For a random vector per se, this correlation is also termed “intra-state vector correlation”. 

o For a stochastic process, which consists of a collection of random vectors, random 

variables in one random vector can also be correlated with random variables in another 

random vector, this is also termed “inter-state vector” correlation.  The same concept is 

applicable to random fields. 

Error Ellipsoid - An ellipsoid such that there is a 90% probability (or XX% if specified specifically) that 

geolocation error is within the ellipsoidal boundary (ellipsoid interior).  An error ellipsoid can be  

generated based on a predictive or sample-based  error covariance matrix, centered at an assumed 

predictive mean-value of error equal to zero or a sample-based mean-value of error not equal to zero, 

and an assumed multi-variate Gaussian probability distribution of error in up to three dimensions. 

Estimator - An algorithm/process which estimates the value of an nx1 state vector.  Its inputs are 

measurements related to the state vector and may include a priori information about the state vector.  

 An estimator is usually designed to be an optimal estimator relative to a cost function, such as the 

sum of weighted a posteriori measurement residuals, minimum mean-square solution error, etc.   

 Estimators are sequential or batch processes, and an optimal estimator should include both an 

estimate of the state vector and its predicted accuracy, usually an error covariance matrix, as 

output. A properly implemented MIG for a target’s geolocation is an optimal estimator. 

Gaussian (or Normal) probability distribution - A specific type of probability distribution for a random 

variable.  The distribution is specified by either a Gaussian probability density function or a Gaussian 

cumulative distribution function.  These in turn are completely characterized by the random variable’s 

mean-value and variance.   

 The Gaussian (probability) distribution is a common distribution that approximates many kinds of 

errors of interest to the NSG, and approximates the distribution for a sum of errors from different 

(non-Gaussian) distributions as well (Central Limit Theorem).  A Gaussian distribution 

corresponding to an nx1 random vector is termed a multi-variate Gaussian distribution. 
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Geodetic Coordinate System - Coordinate system in which position is specified by geodetic latitude, 

geodetic longitude and (in the three-dimensional case) ellipsoidal height [d]. 

Ground Truth - The reference or (assumed) true value of a geolocation of a measured quantity (e.g. 

associated with an absolute geolocation, or a relative mensuration). 

Homogeneous - A descriptor for a random field.  A random field is (wide-sense) homogeneous if 

corresponding (a priori) statistics are invariant to spatial location.  For example, the mean-value and 

covariance matrix corresponding to its random vectors are constant, and correlation between two 

corresponding but arbitrary random vectors in the same realization is a function of spatial distance 

between them, not the explicit spatial location of each. 

Horizontal Error - As applied to geospatial measurements and processes, horizontal error is typically 

observed in the  ,   plane of a local right-handed coordinate system where the  ,   plane is defined as 

tangent to the defined reference surface at the point of origin.  While horizontal error is the   and   

components of error, it may be generalized by its magnitude or 2D radial error.   

Inter-state vector correlation - The correlation between the errors (random variables) of the elements in 

two different state vectors. 

Intra-state vector correlation - The correlation between the errors (random variables) of different 

elements in the same state vector. 

Local Tangent Plane Coordinate System (Coordinate System/Coordinate Reference System) - A local 

X,Y,Z right-handed rectangular coordinate system such that the origin is any point selected on a given 

reference ellipsoid, its XY plane is tangent to the reference ellipsoid at the point of origin, and the Y-axis 

is typically directed to the North Pole (an East-North-Up (ENU) system). [a] 

Mean-Value - The expected value of a random variable.  Given a collected sample of measurements, the 

sample mean-value is the average of the values of the sample measurements.  The mean-value of a 

predictive error is typically assumed zero unless specifically stated otherwise.  If correctly modeled, the 

predictive mean-value should be closely approximated by the sample mean-value taken over a large 

number of independent and identically distributed samples.  

 The concept of mean-value readily extends to random vectors and is the vector of the mean-

values of the individual components or random variables making up the random vector.  It readily 

extends to stochastic processes and random fields as well, since they are collections of random 

vectors.  If (wide-sense) stationary or (wide-sense) homogeneous, respectively, their 

corresponding mean-value is a constant random vector mean-value. 

Metadata - Higher level or ancillary data describing a collection of data, e.g., the sensor support data 

corresponding to an image, which specifies corresponding sensor position, attitude, interior orientation 

parameters, etc. 
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Multi-Image Geopositioning (MIG) - An optimal solution for a “target’s” geolocation (state vector) with 

reliable predicted accuracies based on the (weighted) measurements of the geolocation in one or more 

images.    A batch process which minimizes the sum of weighted a posteriori measurement residuals, 

where the latter may also include measurements equivalent to a priori estimates of geolocation.  MIG can 

also correspond to the simultaneous solution for the geolocation of multiple targets.  In general, a 

MIG solution’s predicted accuracies correspond to or are derived from the solution’s a posteriori error 

covariance matrix. 

Multi-State Vector Error Covariance Matrix - An error covariance matrix corresponding to multiple state 

vector errors (random error vectors) “stacked” one on top of the other as one large state vector error 

(random error vector), e.g. to represent the position and attitude errors of multiple images’ adjustable 

parameter errors that impact the solution and predicted accuracy of a subsequent MIG.  The multi-state 

vector error covariance matrix is sometimes termed the joint covariance matrix for a collection of multiple 

state vector errors. 

Order Statistics - Nonparametric statistics performed on a set ordered by ascending magnitude of 

randomly sampled values.  Nonparametric statistics assume no a priori information about the underlying 

probability distribution of a random variable such as its mean-value, variance, or type of probability 

distribution function.  In the NSG, order statistics are used to compute scalar accuracy metrics from 

independent and identically distributed samples of error. 

Percentile - If a random variable’s probability (or sample) distribution is divided into 100 equal parts, the 

value of the random variable that corresponds to the percentage of the distribution equal to or below the 

specified percentile, e.g. the 90th percentile indicates the lowest sample value such that it is greater than 

the values of 90 percent of the samples. 

 A more formal definition is as follows: The 𝑝 percentile of a random variable   is defined as the 

smallest number  𝑝 such that 𝑝 = 𝑝  𝑏{ ≤  𝑝}.  Thus, the probability distribution function 

(typically unknown) of the random variable   evaluated at  𝑝 is equal to 𝑝.    𝑝 is a deterministic 

parameter with typically unknown value.   

Precision - The closeness to one another of a set of repeated observations of a random variable. [a],[f] 

 In terms of accuracy, precision is a measure of the repeatability of the underlying errors.  High 

accuracy implies high precision, but not vice versa.  For example, for an error represented as a 

random variable, high precision implies a small standard deviation, but high accuracy implies both 

a small standard deviation and a small or zero mean-value (or bias). 

Principal Matrix Square Root - The principal matrix square root of a valid error covariance matrix is a valid 

error covariance matrix itself of the same dimension such that when multiplied with itself yields the 

original error covariance matrix.  The calculation of principal matrix square root is based on Singular Value 

Decomposition. 
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Probability density function (pdf) - A function that defines the probability distribution of a random 

variable.  If continuous, its integral is the (cumulative) probability distribution function. 

Probability distribution - Identifies the probability of a random variable’s values over an applicable range 

of values. There are many different types of probability distributions: Gaussian or Normal, uniform, 

exponential, etc.  

 In most NSG applications for accuracy and predicted accuracy, the random variable and its 

probability distributions are assumed continuous. 

 The probability distribution is specified by either a probability density function or a (cumulative) 

probability distribution function; either based on an a priori model or sample statistics. 

Probability distribution function - The (cumulative) probability distribution function defines the 

probability that a random variable’s value is less than or equal to a specified number in the interval [0,1]. 

Provenance - The place of origin or generation history of data. 

Radial Error - A generalization of two horizontal error components ( ,  ) or three dimensional (horizontal 

and vertical error components –  ,  ,  ) error components to a distance value (magnitude) as measured 

along the radius of a circle or sphere, respectively.   

Random Error - A category of error; a measure of deviation from an ideal or true value which results from 

an accidental and unknown combination of causes and varies from one measurement to the next. Not 

deterministic.  For NSG applications, a random error is typically represented as a random variable, random 

vector, stationary process, or random field.  And more specifically, as deviations about their mean-values, 

the latter considered biases. [b],[f]  

 The random error corresponding to a random variable or the random error corresponding to (the 

elements of) a random vector are independent (uncorrelated) from one realization to the next, 

by definition. 

 The random error corresponding to (the elements of) a random vector can also be correlated 

between the various elements for a given realization (intra-state vector correlation); hence this 

error is also a correlated error. 

 The random error corresponding to a stochastic process corresponds to the collection of random 

errors associated with the collection of random vectors making up the stochastic process.  

Random error is independent (uncorrelated) from one realization to the next.  However, within a 

specific realization, the individual random error vectors are typically temporally correlated 

amongst themselves (inter-state vector correlation); hence, random error is also correlated error.  

This same characteristic extends to random fields. 

 The probability distribution for a random variable representing a random error is arbitrary – not 

necessarily Gaussian. 

Random Field - A random field (RF) is a collection of random vectors (RV), parameterized by an N-

dimensional spatial vector q.  In general, two different random vectors from the same realization of the 
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random field are correlated.  In the NSG, when error is represented by a random field, its corresponding 

statistics are specified by a statistical error model.  A general descriptor of a given random field is as 

follows: a (“scalar” or “multi-variate”) (“homogeneous” or “non-homogeneous”) “ND random field”.  

 Scalar (n=1) or multi-variate (n>1) refers to the number of elements n that each random vector 

contains and is sometimes described as “(nd)”, e.g. (2d) corresponds to 2 elements (random 

variables) per random vector. 

 Homogeneous or non-homogeneous refers to whether the corresponding statistics are invariant 

or vary over spatial location q. 

 ND refers to the number of spatial dimensions (number of elements in q), e.g. 3D corresponds to 

3 spatial dimensions.  Each random vector corresponds to a unique value of q. 

 As an example of terminology, “a multi-variate homogeneous 3D random field” or more 

specifically “a homogeneous 3D random field (2d)” corresponds to a multi-variate homogeneous 

random field over 3 spatial dimensions (q is a vector with 3 elements).  The random vectors 

contain 2 elements. 

 Spatial dimensions are general.  For typical NSG applications, they correspond to some 

combination of geolocation directions and time.  Note that a stochastic process is also a random 

field with N=1. 

 In general, the collection of random vectors is infinite for a random field; however, only a finite 

subset are of interest for most applications, i.e., random vectors associated with a finite set of 

spatial locations. 

 For typical NSG applications, the spatial correlation of a random field is specified by one of more 

strictly positive definite correlation functions (spdcf) contained in the corresponding statistical 

error model. 

Random Variable - A variable whose value varies by chance, i.e., non-deterministic. Somewhat more 

formally, a random variable is a mapping from the space of experimental outcomes to a space of numbers.  

In the NSG, when error is represented by a random variable (a random vector with one component or 

element, i.e., n=1), its corresponding statistics are specified by a statistical error model. 

 For most NSG applications, the space of experimental outcomes is already a number.  For 

example, the x-component of sensor position can be considered a random variable.  Equivalently, 

it can be defined as the true x-component of sensor position plus x-component of sensor position 

error, the former a deterministic (typically unknown) value and the latter a random variable.   

 A random variable is statistically characterized by its mean-value, variance, and (more completely) 

its probability density function (pdf).  The probability density function (pdf) is typically unknown 

and not included, but if needed for the calculation of probabilities, assumed Gaussian distributed 

with the pdf completely characterized by the mean-value and variance. 

Random Vector - A random vector (RV) is an nx1 vector which contains n random variables as components 

or elements.  In the NSG, when error is represented as a random vector, its corresponding statistics are 
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specified by a statistical error model.  The corresponding random vector is also sometimes termed a 

random error vector. 

 The realization of a Random Vector corresponds to a specific value of the vector (components or 

elements) for a given event such as a trial or experiment.  Important descriptive statistics of a RV 

are its mean (vector) value and the error covariance matrix about the mean, and optionally, a 

multi-variate probability density function.  These statistics can be predictive or sample-based. 

Realization - For NSG accuracy and predicted accuracy applications, a specific trial or experimental 

outcome or independent sample involving a random error (category of error). 

Relative Horizontal Accuracy - The range of values for the error in the difference between two objects’ 

horizontal metric geolocation values with respect to a specified geodetic horizontal reference datum; e.g. 

expressed as a radial error at the 90 percent probability level (CE90). There are two types of relative 

horizontal accuracy: predicted relative horizontal accuracy is based on error propagation via a statistical 

error model(s); and measured relative horizontal accuracy is an empirically derived metric based on 

sample statistics. 

Relative Vertical Accuracy - The range of values for the error in the difference between two objects’ 

vertical metric geolocation values with respect to a specified geodetic vertical reference datum; e.g.  

expressed as a linear error at the 90 percent probability level (LE90). There are two types of relative 

vertical accuracy: predicted relative vertical accuracy is based on error propagation via a statistical error 

model(s); and measured relative vertical accuracy is an empirically derived metric based on sample 

statistics. 

Rigorous Error Propagation - Represents the proper statistical modeling of all significant errors and their 

interrelationships throughout an NSG system.  It enables optimal solutions as well as reliable predicted 

accuracies associated with specific estimates and products across the system modules. 

Scalar Accuracy Metrics (augmented definition) - convenient one-number summaries of geolocation 

accuracy and geolocation predicted accuracy expressed as a probability:   [b], [f], and [h] 

 Linear Error (LE) - LE is an unsigned value that corresponds to the length of a vertical line (segment) 

such that there is a 90% probability that the absolute value of vertical error resides along the line.  

If the line is doubled in length and centered at the target solution, there is a 90% probability that 

the true target vertical location resides along the line.  LE_XX corresponds to LE at the XX % 

probability level. 

 Circular Error (CE) - CE is an unsigned value that corresponds to the radius of a circle such that 

there is a 90% probability that the horizontal error resides within the circle; or equivalently, if the 

circle is centered at the target solution, there is a 90% probability the true target horizontal 

location resides within the circle.  CE_XX corresponds to CE at the XX % probability level.  

 Spherical Error (SE) - SE is an unsigned value that corresponds to the radius of a sphere such that 

there is a 90% probability that 3d error resides within, or equivalently, if the sphere is centered at 
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the target solution, there is a 90% probability that the true target location resides within the 

sphere.  SE_XX corresponds to SE at the XX % probability level. 

For the above scalar accuracy metrics:  

 It is assumed that the underlying  - -  coordinate system is a local tangent plane system, i.e.,   

and   are horizontal components and   the vertical component.   

 CE-LE corresponds to the CE-LE error cylinder.  There is a probability between 81 to 90 percent 

that 3d radial error resides within the cylinder.  The former value corresponds to uncorrelated 

horizontal and vertical errors, the latter value to highly correlated horizontal and vertical errors. 

 LE_XX, CE_XX, and SE_XX (aka LEXX, CEXX, and SEXX, respectively) are also called XX percentiles 

for absolute vertical errors, horizontal radial errors, and spherical radial errors, respectively.  XX 

is expressed as an integer greater than zero and less than 100. 

Sensor support data – See “metadata”. 

Spatial Correlation - The correlation between the elements (random variables) of two random vectors at 

two different spatial locations associated with the same realization of a random field. 

Standard Deviation – The square root of the variance of a random variable.  A measure of deviation or 

dispersion about the random variable’s mean-value. 

State Vector - A vector of parameters or variables that describe a system’s state. 

State Vector Error - A vector of errors corresponding to an estimate of a state vector relative to a (typically 

unknown) true state vector; a random vector of errors, or random error vector. 

Stationary - A descriptor for a stochastic process with corresponding (a priori) statistics invariant over 

time.  See homogeneous as well for random fields, which if corresponding to one spatial dimension are 

stochastic processes. 

Stochastic Process - A stochastic process (SP) is a collection of random vectors (RV), parameterized by a 

1D quantity, typically time.  For a given realization of the stochastic process, the individual random vectors 

are correlated with each other.  If the random vectors consist of one element or component (n=1), the 

stochastic process is sometimes called a scalar stochastic process, and if greater than one, a multi-variate 

stochastic process.  A stochastic process is also a random field with one spatial (or time) dimension, i.e., 

N=1.  In the NSG, when error is represented as a stochastic process, its corresponding statistics are 

specified by a statistical error model. 

Strictly Positive Definite Correlation Function (spdcf) - A function which models the statistical correlation 

between random vectors (random variables), typically applied in the NSG to describe the temporal 

correlation and/or spatial correlation between various random vectors which are part of a stochastic 

process or random field, i.e., the spdcf is a function of delta time or delta distance (possibly in each of 

multiple directions) between random vectors.  The proper use of an spdcf ensures assembly of a valid 

multi-state vector error covariance matrix, i.e., positive definite and symmetric. 
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Systematic Error - An error characteristic or error effect due to errors that are represented by random 

variables, random vectors, stochastic processes, or random fields.  For example, an effect on observations 

(samples) such that their pattern of magnitude and direction are consistent but not necessarily constant.  

Such an effect can be associated with: [f],[j]  

 Error(s) represented by a stochastic process or random field which appear systematic across time 

or space, respectively, due to temporal or spatial correlation, respectively. 

 The error in a frame image-to-ground sensor model’s adjustable parameter for focal length.  This 

error is typically represented by a random variable, with a mean-value of zero and a constant 

variance, but its effect when projected to the ground appears as a systematic error across ground 

locations, e.g., it has a scaling effect which increases the closer the ground point to the image 

footprint’s boundary. 

Temporal Correlation - The correlation between the elements (random variables) of two random vectors 

at two different times associated with the same realization of a stochastic process. 

Time Constant - The delta time value such that the correlation coefficient for temporal correlation 

expressed as a decaying exponential equals 𝑒 1 ≅ 0.37 .        

Uncertainty – A lack of certainty; limited knowledge; unknown or imperfect information.  In terms of NSG 

applications, more general than the concepts of errors and accuracy, but sometimes used informally as a 

synonym.  Applies to predicted accuracy but not to empirical (sample-based) accuracy. 

Uncorrelated Error - At an intuitive level, an error that is statically unrelated to all other relevant errors.  

More precisely, if two random variables represent two uncorrelated errors (about their respective mean-

values), their covariance and their corresponding correlation coefficient are zero.  A random variable is 

uncorrelated (with itself) from one realization to the next by definition. This latter property is also true 

for the random variables making up random vectors, stochastic processes, and random fields.  However, 

these three representations typically include correlated errors within the same realization.   

Uncorrelated Values - Values (of random variables or errors) which are statistically unrelated. [f] This is 

represented for two random variables by their covariance with a value of zero. 

Vertical Error - As applied to geospatial measurements and processes, vertical error is a signed and one 

dimensional (linear) error value typically observed in the direction of the  -axis of a local right-handed 

coordinate system where the  ,   plane is defined as tangent to the defined reference surface at the point 

of origin and the  -axis is normal to the  ,   plane and positive in the up direction. 

WGS-84 - World Geodetic System 1984 – A documented and formally maintained global coordinate 

system which allows an unambiguous representation of positional information by providing the basic 

reference frame (coordinate system), geometric figure for the earth (ellipsoid), earth gravitational model, 

and means to relate positions on various geodetic datums and systems for DoD operations and 

applications. [g] 
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Appendix B - Representation and Specification of Sensor Metadata 

Accuracy  
This appendix is in support of Section 4.6.3 of the main body of this document, and describes three 
general methods that can be used to specify system sensor metadata accuracy as opposed to overall 
system geolocation accuracy.  Specification of system sensor metadata accuracy is typically applicable to 
the Collection Module and/or the Value-Added Module.  Specification of geolocation accuracy is 
applicable to the entire “end product” of the Geolocation System, but typically applicable specifically to 
the Exploitation Module as it is the “end” module (see Figure 4.1-1).  And as a reminder, we are 
discussing system accuracy, not the predicted accuracy associated with a specific geolocation object. 

The three general methods to specify system sensor metadata accuracy are: Geolocation Equivalent, 
State Vector Direct, and Sensor Direct, and are summarized in Table B-1. 

The examples of Section 4.6.2 in the main body of this document correspond to the Geolocation 

Equivalent method if errors are assumed limited to sensor metadata errors.  The State Vector Direct 

method essentially consists of metrics directly related to the error covariance matrix corresponding to 

predicted accuracy for a representative solution or extraction. The Sensor Direct method is illustrated by 

examples referred to in Table B-1, and are further detailed after the table.   
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Table B-1: Methods for the specification of system accuracy for sensor metadata 

 

 

 

 

 

Method Approach Comments

Geolocation Specify as geolocation accuracy, CE90 for Convenient and expressed directly as

Equivalent horizontal errors and LE90 for vertical or corresponding effect on geolocations.

elevations errors, assuming sensor metadata

errors are the only errors affecting the Representative sensor metadata error covariance

corresponding geolocation solutions or matrices can be input to a representive WLS

extractions. solution (e.g., MIG solution, if images), and the

solution covariance matrix used to generate

A specification for sensor metadata accuracy CE90 and LE90 used to specify sensor metadata  

in a Geolocation System: accuracy for an arbitrary sensor metadata.

geolocation errors due to sensor The WLS solution can also use

metadata errors correspond to multiple measurements and a priori elevation

CE90 <= xx meters and LE90 <= yy meters. if applicable to the Geolocation System's

operational scenario.

The above errors may also include the

contirbution of a nominal amount of sensor

mensuration (measurement) error as well

if specifically specified.

State Vector Specify as expected magnitude of various Directly applicable to any sensor and

Direct subgroups of state vector component errors, corresponding sensor metadata.

either as rms, maximum standard deviation,

or as scalar accuracy metrics,  such as Group similar components with similar units

LE90 , CE90 ,or SE90. and express corresponding statistical metrics

using those units.

Example of the specified accuracy of arbitrary

sensor metadata corresponding a Geolocation Expected value of all errors assumed

System based on an EO imaging sensor(s):

zero unless specifically stated (statistically

sensor 3d postion errors SE90 <= xx1 meters, bounded) otherwise.

sensor 2d rotation angle errors about the

image plane axes CE90 <= xx2 milliradians, Statistical metrics have appropirate units; for

sensor 1d rotation angle errors about the example if a subgroup corresponds to attitude,

focal lenth axis LE90 <= xx3 milliradians, applicable units may be milliradians.

and focal length correction errors 

LE90 <= xx4 micrometers.
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Table B-1 (continued): Methods for the specification of system accuracy for sensor metadata  

 

 

Examples of the Sensor Direct Method 

An example of the Sensor Direct method for the representation or specification of system accuracy 

corresponding to EO imagery is presented in Figure B-1: the specification of CE90 angular error 

corresponding to sensor metadata.  This is similar to the method detailed in [1, pg. 34]. 

Method Approach Comments

Sensor Direct Specify sensor metadata accuracy Directly associated with the sensor, its

as statistical metrics, such as metadata and type of measurement.

standard deviations or scalar accuracy

metrics, LE90, CE90, or SE90, as appropriate.  The geolocation locus is defined as all

possible geolocations consistent with the

The corresponding errors are either:  sensor measurement.

(1) the projection of sensor metadata errors Examples:

perpendicular to the geolocation locus

based on a single sensor measurement, (1) Figure B-1 corresponding to the

or geolocation locus assuming one EO image

(2) the projection of sensor metadata errors and corresponding measurement:

to geolocations based on  either one

sensor measuement if it is inherently 3d accuracy expressed as CE90 angular error;

(e.g., LiDAR) or one sensor measurement

and the assumed and specified use of an (2) Figure B-3 corresponding to a

elevation. geolocation assuming one SAR image and

corresponding measurement and a

a known elevation:

accuracy expressed as 

90% error ellipse corresponding to

range and azimuth horizontal ground

coordinates for a SAR sensor.
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Figure B-1: Sensor Direct representation of sensor metadata accuracy corresponding to EO imagery 

An example of the Sensor Direct method corresponding to SAR imagery is presented in Figure B-3: the 

specification of the 90% azimuth – range error ellipse corresponding to sensor metadata. Figure B-2 also 

presents a general comparison between EO and SAR imagery as background information, with [11] a 

general reference for SAR and related imagery. 

 

Figure B-2: Overview of SAR and optical sensors; originally from [2] 
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radiation from sun)

2D image plane
SAR Sensor 

(senses active 

radiation)

Projection onto 

2D slant plane
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Figure B-3: Sensor Direct representation of sensor metadata accuracy corresponding to SAR imagery 

 

Some interesting features of SAR sensor metadata and imagery that are in complimentary contrast to 

EO sensor metadata and images that are not explicitly illustrated in the above figures are as follows: 

1) SAR sensor metadata includes sensor velocity, not sensor attitude; 

2) the SAR geolocation locus corresponds to a circle at the base of a range-doppler cone, not a line; 

3) if an elevation from a DEM or DSM intersects the SAR geolocation locus, the elevation error’s 

contribution to horizontal error decreases with decreasing LOS elevation, not increases, i.e., 

measurements from SAR and EO imagery are complimentary. 

Finally, note that the Sensor Direct method for the representation of sensor metadata (system) accuracy 

is also sometimes applied for the representation of sensor metadata predicted accuracy for specific 

sensor metadata.  An example corresponds to sensor metadata represented using a Rational Polynomial 

Coefficient (RPC) sensor model, as documented in [7]. 

 

 

 


